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Abstract

We develop methods for Bayesian inference in vector error correction mod-
els which are subject to a variety of switches in regime (e.g. Markov switches in
regime or structural breaks). An important aspect of our approach is that we
allow both the cointegrating vectors and the number of cointegrating relation-
ships to change when the regime changes. We show how Bayesian model aver-
aging or model selection methods can be used to deal with the high-dimensional
model space that results. Our methods are used in an empirical study of the
Fisher effect.
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1 Introduction

Two of the most important challenges of modern empirical macroeconomics involve
the wish to incorporate restrictions suggested by economic theory and the empirical
need to allow for parameter change in multivariate time series models. With regard
to the former, cointegration has played an important role as economic theory often
suggests particular cointegrating relationships which the researcher may wish to im-
pose or test for. As one example, consider the UK macroeconomic model of Garratt,
Lee, Pesaran and Shin (2003). This uses the purchasing power parity relationship,
an interest rate parity condition, a neoclassical growth model, the Fisher hypothe-
sis and a theory of portfolio balance to build a macroeconometric model involving
five cointegrating relationships. With regard to the latter, papers such as Ang and
Bekaert (2002) and Stock and Watson (1996) document widespread evidence of pa-
rameter change in many macroeconomic time series. In the field of cointegration,
there are a large number of theoretical and empirical papers that model breaks or
other forms of nonlinearity in cointegrating relationships, present empirical results
relating to cointegration work using subsamples of the data or attribute failures of
cointegration tests to parameter change (see, among many others, Michael, Nobay
and Peel, 1997, Quintos, 1997, Park and Hahn, 1999, Lettau and Ludvigson, 2004,
Saikkonen and Choi, 2004, Andrade, Bruneau and Gregoir, 2005, Beyer, Haug and
Dewald, 2009 and Bierens and Martins, 2010).

All this work provides evidence of widespread empirical and theoretical interest
in cointegration models with changing cointegrating spaces. However, with few ex-
ceptions (e.g. Martin, 2000, Paap and van Dijk, 2003 and Sugita, 2006 and Koop,
León-González and Strachan, 2008) this work is non-Bayesian. One purpose of the
present paper is to provide a set of Bayesian tools for working with Vector Error
Correction Models (VECMs) in the presence of changes in regime. The previous
Bayesian work with time-varying cointegration typically assumes cointegrating rank
is constant across regimes (e.g. Koop, León-González and Strachan, 2008a) or works
with much simpler model spaces than the one considered here (e.g. Martin, 2000,
Paap and van Dijk, 2003 and Sugita, 2006).

A second purpose of this paper is to address the issues that arises with cointegra-
tion models due to the fact that the model space can be large. The researcher will
typically consider models with different cointegrating ranks, different restrictions im-
posed on the cointegrating relationships, different lag lengths, different treatment of
deterministic terms, etc. In previous work (see Koop, Potter and Strachan, 2008 and
Jochmann, Koop, León-González and Strachan, 2011), we have developed Bayesian
methods to navigate through such high-dimensional model spaces in the constant
coefficient VECM. In this paper, we work with models with regime change and, in
these, the dimension of the model space is greatly increased. For instance, we may
wish to allow the cointegrating rank to differ across regimes or a restriction implied
by economic theory to hold at some time periods but not others (e.g. we might have
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purchasing power parity holding in the 1970s but not the 1980s). Furthermore, in
practice it is typically unclear what determines changes in regime. Of models that
allow for regime change, structural break models assume breaks occur at specific
points of time and regimes do not recur. Markov switching models allow for regimes
to recur (i.e. the model switches between expansionary and recessionary dynam-
ics). It is empirically-sensible to work with a model space that allows for a range of
such possibilities. Thus, a final contribution of this paper lies in the fact we offer a
richer treatment of regime change, allowing for both structural break and Markov
switching behavior. We show how, regardless of whether the researcher wishes to do
Bayesian model averaging (BMA) or select a single model, the Bayesian approach is
an attractive one in model spaces of this dimension.

Our methods are applied in an empirical exercise investigating the Fisher effect.

2 VECMs with Regime Switching

2.1 A General Framework

An unrestricted VECM for an n-dimensional vector yt can be written as:

∆yt = α′β′yt−1 +

p−1∑
j=1

γj∆yt−j + εt, (1)

where α is a full rank r × n matrix, β is a full rank n × r matrix, γj is n × n and
εt ∼ N(0,Σ). r and p are the number of cointegrating relationships and lag length,
respectively. For notational simplicity, we have not included deterministic terms in
(1). See, e.g., Johansen (1995, Section 5.7) or Franses (2001) for a discussion of
deterministic terms in VECMs.

A wide range of regime switching VECMs can be obtained by adding st subscripts
to the parameters in (1), leading to:

∆yt = α′st
β′st
yt−1 +

p−1∑
j=1

γj,st
∆yt−j + εt, (2)

with εt ∼ N(0,Σst) and st ∈ {1, . . . ,M} indicating which of M regimes applies
at time t. Importantly, we assume αst is rst × n and βst

are n × rst so that the
cointegrating rank can change when the regime changes.

Examples of models that can be put in this framework include Markov switching,
other regime switching models such as endogenous threshold models, structural break
models and time-varying parameter models. In the Bayesian multivariate time series
literature, the emphasis has been on extensions to Vector Autoregressive (VAR) mod-
els. Prominent examples include the Markov switching VAR of Sims and Zha (2006)
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and the time varying parameter (TVP) VARs of Cogley and Sargent (2005) and
Primiceri (2005). However, VARs are parameter-rich models and VARs with regime
change are even more parameter rich. This has led to approaches which attempt to
mitigate over-parametrization worries by using shrinkage priors and impose restric-
tions. Cointegration provides a good source of potential restrictions (often motivated
by economic theory) which can help achieve parsimony.

2.2 Modeling the Regime Switching Process

Many specifications for ST = (s1, . . . , sT )′ are possible. For instance, Koop, León-
González and Strachan (2008a) set st = t and M = T , resulting in a TVP-VECM.
However, their model assumes a common cointegrating rank at all points in time,
an assumption we wish to relax in the present paper. Sugita (2006) assumes a
Uniform prior over break dates which involves the assumption that st is sequentially
increasing (i.e. st = st−1 + 1 if a break occurs at time t). Such an approach can be
computationally daunting in the case of multiple breaks. That is, with one break in
a sample of size T there are on the order of T possible break dates, but with M − 1
breaks this increases to the order of TM which can lead to a serious computational
burden if additional structure is not placed on ST .

Many approaches in the literature can be interpreted as placing a particular
structure on ST using hierarchical priors. In this paper, we consider one class of
hierarchical priors using Markov specifications for ST . These are empirically popular
in many contexts and convenient and computationally efficient MCMC algorithms
exist (e.g., Chib, 1996). A standard Markov switching specification of the sort used,
e.g., in Sims and Zha (2006) has:

Pr(st = j|st−1 = i) = ξij, i, j = 1, . . . ,M, (3)

where ξij is the probability of switching from regime i to regime j. In the Markov
switching model no restrictions (other than the ones implied by probabilities sum-
ming to one) are placed on the ξij.

Chib (1998) notes that a Markov switching model can be turned into a structural
break model by placing restrictions on the ξij. In particular, he sets ξij = 0 for all i
and j except for the following:

Pr(st = i|st−1 = i) = ξii, i = 1, . . . ,M − 1,

Pr(st = i+ 1|st−1 = i) = 1− ξii, i = 1, . . . ,M − 1,

Pr(st = M |st−1 = M) = 1.

(4)

It can be seen that this leads to a model with M − 1 structural breaks. That is,
if regime i holds at time t− 1, then at time t the process can either remain in regime
i (with probability ξii) or a break occurs and the process moves to regime i+ 1 (with
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probability 1− ξii). The process moves through regimes sequentially (i.e. it cannot
jump from regime i to regime i+ 2). Once a break occurs, the process cannot revert
to an old regime (i.e. it cannot jump from regime i to regime i− 1).

By modelling ST in terms of a Markov process we obtain a computationally
feasible model (using the algorithm of Chib, 1996) and can allow for regime switching
behavior of various sorts. We can have a conventional Markov switching formulation
where VECM coefficients vary over the business cycle (or in some other manner) or a
structural break model where coefficients change at particular points in time. These
are the two specifications for the break process considered in this paper. However,
any specification for the ξij can be used with the methods outlined in this paper and
only trivial alterations would be required to accommodate other specifications for
ST .

2.3 Model Space

The previous material outlines a general modeling framework for regime-switching
VECMs. The resulting model space can be large since we allow for both βst

and
rst to differ across regimes. Furthermore, we may wish to consider models which
impose restrictions on βst

. For instance, in our empirical work, we consider versions
of the model which impose the restriction βst

= (1,−1)′ which is the value implied
by Fisher’s hypothesis. The cointegration rank rst can be either be 0 or 1 and we
consider lag lengths p = 1, 2, 3. In the case of structural breaks we analyze models
with 2 and 3 regimes which already gives us 81 models. This does not even include
modeling choices such as the treatment of deterministic terms which will increase
the model space even more. With model spaces of this size, sequential hypothesis
testing procedures can be risky. BMA (which averages over all models with weights
proportional to posterior model probabilities1) or model selection (which chooses the
single model with the highest posterior model probability) are attractive alternatives.
But this suggests the need for efficient posterior simulation and marginal likelihood
calculation methods and it is to these we now turn.

3 Bayesian Inference in Regime Switching

VECMs

The Appendix contains complete details on priors, posterior simulation and marginal
likelihood calculation. Here we provide a summary of the main ideas involved in each.

1In the case where all models, a priori, are given equal weight, posterior model probabilities are
proportional to marginal likelihoods.
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3.1 Prior Distributions

We let the vector θ collect all model parameters. It contains the VECM parameters
{αi}, {βi}, {Γi} and {Σi}, i = 1, . . . ,M and the switching probabilities {ξij}, i, j =
1, . . . ,M . For the latter it is common (e.g. Chib, 1998) to use Beta priors and we
follow this practice. Our priors for the VECM parameters are the same as those used
in previous work and are in all cases proper (thus, allowing for valid calculation of
marginal likelihoods). We assume the priors in different regimes are independent of
one another. The reader interested in a detailed motivation is referred to the previous
literature (see, e.g., Strachan, 2003, Strachan and Inder, 2004, Koop, Potter and
Strachan, 2008 and Koop, León-González and Strachan, 2010) with precise formulae
being given in the Appendix. Briefly, for {αi} and {Γi} Normal shrinkage priors are
used with similar properties to Minnesota priors. They reduce worries associated with
over-fitting. For {Σi} inverted Wishart priors are used. Typically, in a cointegration
analysis it is the priors for {βi} which are most important. The basic idea of this prior
is that, given the lack of identification of the VECM due to the product structure of
the terms {α′iβ′i}, it is only the space spanned by the cointegrating vectors which is
identified. In our empirical work, in regimes where cointegration is present, we use
two different priors. In situations in which we do not want to restrict the cointegration
space in a regime we use a Uniform prior over the cointegration space. In contrast,
if we want the Fisher effect to hold in a regime we assume an informative prior
centered over the space implied by the Fisher effect. It can be shown that these are
both proper priors and, thus, valid marginal likelihoods can be obtained.

3.2 Posterior Simulation and Marginal Likelihood Calcula-
tion

Efficient posterior simulation in the VECM with the aforementioned prior can be
implemented using the algorithm developed in Koop, León-González and Strachan
(2010). ST divides the sample into regimes. Thus, conditional on ST , we can use this
algorithm to draw the VECM coefficients in each regime. Conditional on posterior
draws of the VECM coefficients, the algorithm of Chib (1996) (restricted as in Chib,
1998, for the structural break case), can be used to draw ST .

Marginal likelihood calculation can be difficult in multivariate state space models
such as the VECM. This has led to the use of approximations (e.g. the Laplace ap-
proximation of Strachan and Inder, 2004 or the information criteria of Koop, Potter
and Strachan, 2008), methods based on the Savage-Dickey density ratio (e.g. Koop,
León-González and Strachan, 2008b), methods which do not explicitly calculate the
marginal likelihood in each model (e.g. the stochastic search variable selection ap-
proach of Jochmann, Koop, León-González and Strachan, 2011) or alternatives to
the marginal likelihood such as the predictive likelihood (e.g. Geweke, 1996). Given
a desire to directly use marginal likelihoods and avoid approximations, in this paper
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we use a bridge sampler to calculate the marginal likelihood. See Gelman and Meng
(1998) for a general treatment of bridge sampling and Frühwirth-Schnatter (2004) for
bridge sampling in Markov switching models. Frühwirth-Schnatter (2004) compares
bridge sampling with other methods and finds the former to be much more reliable
and efficient.

Complete details of prior, posterior computation and bridge sampling are pro-
vided in the Appendix.

4 Application: The Fisher Effect

The Fisher effect is the name given to the theory which implies that a permanent
change in inflation will, in the long run, cause an equal change in the nominal inter-
est rate. Or, equivalently, monetary shocks will have no effect on the real interest
rate in the long run. This can be taken to imply a cointegrating relationship be-
tween inflation, πt, and the interest rate, it, with cointegrating vector (1,−1)′. This
relationship has been investigated in numerous papers for numerous countries and
is often found not to hold. Beyer, Haug and Dewalt (2009) offer a discussion of
this literature and investigate whether structural breaks exist in the cointegrating
relationship in a cross-country study.

In our empirical work, we look at the case of France. For this country, Beyer,
Haug and Dewalt (2009) analyze quarterly data from 1970:Q1 to 2004:Q3 and find
evidence of unit roots in πt and it using classical unit root tests. However, both the
Johansen trace and eigenvalue tests for cointegration indicate cointegration is not
present and, thus, the Fisher effect appears not to hold. They next do a classical
test where the null hypothesis is that cointegration is present, but with a structural
break at an unknown point in time. This test does not reject the null hypothesis
and finds a break in 1981:Q4. However, when Johansen tests are done using sub-
samples (before and after 1981:Q4), the trace test finds cointegration in the second
sub-sample but not in the first, whereas the eigenvalue test finds cointegration in
both sub-samples. We take this as an interesting case where the evidence of previous
work suggests there is a great deal of model uncertainty, both about the presence of
cointegration and about the break process.

Our data on French CPI inflation (quarterly inflation at an annualized rate) and
the 3 month treasury bill rate runs from 1970Q1-2010Q2 and is shown in Figure 1.
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Figure 1:
CPI inflation (dashed line) and three-month interest rate (solid line)

Concerning the inclusion of deterministic trends, we only put a constant in the
cointegration part of the model since neither the inflation series nor the interest rate
series display a trending pattern (see Franses, 2001, for justification of that choice).
In each regime the cointegration relationship between the two variables follows one of
the following three cases: i) they are not cointegrated (we denote this case by b=0),
ii) the cointegration rank is one but the cointegration space is not constrained (b=1),
or iii) the cointegration rank is one and the cointegration space is restricted to cases
that are implied by Fisher’s hypothesis (b=1F).2 For the lag length we consider the
cases p = 1, 2, 3.

Our empirical results strongly favor Markov switching VECMs over structural
break or constant coefficients VECMs. In fact, in a BMA exercise Markov switching
models would receive virtually all of the weight. For the Markov switching case,
there is never any evidence for more than 2 regimes. Accordingly, our empirical
results focus on the Markov switching models with M=2. However, to illustrate the

2This case is obtained by using a prior centered tightly over the restriction (see the discussion
of the prior distributions in the Appendix for more details and Jochmann, Koop, León-González
and Strachan, 2011, for justification of this approach).
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properties of our approach, we also present results for the models with structural
breaks (even though there is little support for these models). For these, we do
find evidence for three regimes and, accordingly, present results for structural break
models with M = 2 and 3.

For brevity’s sake, we do not present any results for constant coefficient VECMs
(M=1). For such VECMs with the various combinations of b and p, we never find a
log marginal likelihood higher than -533.9 which, compared with the results presented
below, means constant coefficient models receive negligible support.

Markov Switching Models

First, we look at results for the Markov switching case with two regimes (M=2). We
impose an identification restriction which specifies that the variance of the interest
rate equation in the first regime is bigger than the variance in the second regime.3

Table 1 gives logarithms of marginal likelihoods for models with different cointegra-
tion relationships in the two regimes and different lag lengths. The model with the
highest marginal likelihood has a lag length of two and specifies that both regimes
are cointegrated but the Fisher effect restriction only holds in the first regime.

Cointegration Lag length
b1 b2 p = 1 p = 2 p = 3
0 0 -536.4 -515.6 -515.4
0 1 -525.4 -516.1 -517.0
0 1F -531.5 -517.1 -517.3
1 0 -531.7 -515.6 -516.7
1 1 -521.5 -515.4 -519.0
1 1F -527.5 -517.3 -519.4

1F 0 -530.3 -514.0 -515.5
1F 1 -520.0 -513.7 -517.8
1F 1F -525.9 -515.6 -518.3

Table 1:
Logarithms of marginal likelihoods for the Markov switching case

For this “best model” Figure 2 plots the posterior probability that the regime
where the Fisher effect holds occurs. It can be seen that this probability is very
high during the 1970s and in the beginning of the 1980s. After that the probability
is very low for much of the time. If this were the full story, then we would expect
a structural break model to work well, with a break occurring around 1983. The

3Imposing the identification restriction means that we do not have to worry about the label-
switching problem. We checked the restriction’s appropriateness by examining draws from the
unconstrained posterior obtained with the permutation sampler of Frühwirth-Schnatter (2001).
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timing of the break is similar to that reported in Beyer, Haug and Dewalt (2009).
However, there are three, relatively short, time periods where the Fisher effect seems
to hold again (in the mid 1990s and at the end of the sample). This kind of behavior
is more consistent with a Markov switching process than a structural break model
and this is why Markov switching models perform so well in our analysis.

Time

P
r(

b=
1F

)

1970 1980 1990 2000 2010

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 2:
Posterior probability that the Fisher effect holds in the “best model”

The same conclusion can be drawn from Figure 3. Here, the cointegration space
is normalized to be a vector (β̃1, 1, β̃3). In this normalization, β̃1 is the normalized
intercept and the Fisher hypothesis tells us that β̃3 should be −1. The posterior
median of β̃3 and its 16% and 84% posterior quantiles are drawn. As expected, the
posterior median of β̃3 is close to −1 at the same times that Figure 2 says there is a
high probability that the Fisher effect holds.
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3

−
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−
1

Figure 3: Posterior median and 16% and 84% posterior quantiles of β̃3 in the “best
model”

So far, we have presented results for the single model with highest marginal
likelihood. However, there are many other models whose marginal likelihoods are
only slightly smaller than that of the “best model”. For example, the close second
best model is the one where the first regime is cointegrated and the Fisher effect holds
but with no cointegration in the second regime. Faced with such model uncertainty,
the researcher may wish to do BMA. Figure 4 gives the results of a BMA exercise.
It plots the posterior probabilities of the three cointegration cases at each point in
time, averaged across all the models in Table 1. The story told by Figure 4 is similar
to that in Figures 2 and 3. Up until 1983, in the mid 1990s and at the end of
the sample the Fisher effect is supported. But elsewhere it is not. Furthermore, in
the periods where the Fisher effect is not supported, there is great uncertainty over
whether cointegration occurs or not.
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Figure 4: Posterior probabilities of the three cointegration cases averaged over all
models

Structural Break Models

Now we discuss results for the structural break case with two and three regimes (M
= 2, 3). Table 2 gives the logarithms of marginal likelihoods for the different models.
As discussed previously, these are much lower than for the Markov switching models
and we include these structural break models for illustrative purposes only.

12



The “best model” with two regimes has a lag length of two. Both regimes are
cointegrated with the Fisher effect holding in the first regime. The “best model” with
three regimes also has a lag length of two. Here, the first regime is cointegrated and
the Fisher effect holds, the second regime is not cointegrated and the third regime
is cointegrated again but the Fisher effect does not hold. Note that conventional
models of cointegration with structural breaks could not handle such a case where
the cointegrating space switches between cointegrating ranks as well as switching
between restricted and unrestricted cointegrating spaces. This illustration shows
that such cases are empirically relevant, highlighting the importance of a modelling
approach which allows for such possibilities.

Figure 5 plots the posterior probabilities for each regime to occur for these two
“best models”. It can be seen that the structural breaks models are trying (poorly)
to approximate the Markov switching properties of Figure 2.
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a) 2 regimes, solid line: P r(s= 1), dashed line: P r(s= 2)
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b) 3 regimes, solid line: P r(s= 1), dashed line: P r(s= 2), dot ted line: P r(s= 3)
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Figure 5: Posterior probabilities of regimes
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Lag length
p = 1 p = 2 p = 3

b1 b2

0 0 -546.1 -531.2 -531.1
0 1 -530.0 -526.5 -527.7
0 1F -536.5 -530.2 -530.8
1 0 -544.2 -532.3 -532.8
1 1 -528.3 -526.9 -529.3
1 1F -534.5 -530.6 -532.4

1F 0 -541.9 -530.7 -531.5
1F 1 -526.5 -524.9 -527.9
1F 1F -532.4 -528.3 -530.9
b1 b2 b3

0 0 0 -544.5 -528.1 -527.1
0 0 1 -530.2 -525.7 -526.1
0 0 1F -536.7 -527.8 -527.6
0 1 0 -532.5 -528.4 -528.2
0 1 1 -528.3 -526.2 -527.5
0 1 1F -532.9 -528.2 -528.7
0 1F 0 -538.9 -529.4 -528.5
0 1F 1 -526.6 -527.0 -527.7
0 1F 1F -536.9 -528.8 -529.2
1 0 0 -542.5 -529.1 -529.0
1 0 1 -528.0 -526.7 -528.1
1 0 1F -534.6 -528.8 -529.6
1 1 0 -530.8 -529.0 -530.2
1 1 1 -528.8 -527.1 -530.0
1 1 1F -531.6 -529.0 -531.1
1 1F 0 -536.9 -530.1 -530.5
1 1F 1 -528.8 -527.8 -530.1
1 1F 1F -532.8 -530.2 -531.5

1F 0 0 -540.4 -527.6 -528.1
1F 0 1 -525.9 -525.2 -527.2
1F 0 1F -532.5 -527.5 -528.8
1F 1 0 -529.0 -527.3 -529.2
1F 1 1 -527.1 -525.4 -529.0
1F 1 1F -531.0 -527.3 -530.3
1F 1F 0 -534.9 -528.5 -529.7
1F 1F 1 -526.0 -526.4 -529.1
1F 1F 1F -531.9 -528.5 -530.9

Table 2:
Logarithms of marginal likelihoods for the structural break case
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5 Conclusions

This paper sets out a framework for Bayesian cointegration analysis which allows for
regime-switching. We allow for both cointegrating rank and the exact cointegrating
space to change when the regime changes. We consider two processes for regime
change, leading to structural break and Markov switching VECMs. BMA or model
selection using marginal likelihoods can be used to deal with the problems caused
by the high-dimensional model space. We develop methods for Bayesian inference
are developed and bridge sampling methods are used to calculate the marginal like-
lihoods. An empirical application involving the Fisher effect shows the usefulness of
our approach.
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Frühwirth-Schnatter, S. (2004), “Estimating Marginal Likelihoods for Mixture
and Markov Switching Models Using Bridge Sampling Techniques,” Econometrics
Journal, 7, 143-167.

Garratt, A., Lee, K., Pesaran, M.H. and Shin, Y. (2003), “A Long-run Structural
Macroeconometric Model of the UK Economy,” Economic Journal, 113, 412-455.

Gelman, A. and Meng, X. (1998), “Simulating Normalizing Constants: From
Importance Sampling to Bridge Sampling to Path Sampling,” Statistical Science, 13,
163-185.

Geweke, J. (1996), “Bayesian Reduced Rank Regression in Econometrics,” Jour-
nal of Econometrics, 75, 121-146.
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Appendix

This appendix describes how the model can be written in matrix notation and in-
troduces a reparametrization that we use. Furthermore, the prior distributions and
the algorithm for posterior simulation are discussed. Finally, we show how marginal
likelihoods are computed with the bridge sampler.

Model in Matrix Form

The model in each regime can be written in the following way:

Yi = Xiβiαi +WiΓi + Ei, i = 1, . . . ,M, (A1)

where Yi, Xi and Wi collect the observations belonging to regime i. Yi is Ti × n
with the rows given by ∆y′

t̃i
, Xi is Ti × n with the rows given by y′

t̃i−1
and Wi is

Ti × [n(p − 1)] with the rows given by (∆y′
t̃i−1

, . . . ,∆y′
t̃i−p+1

), where t̃i denotes the

tth observation in regime i and Ti gives the number of observations in regime i. Ei
is Ti× n with vec(Ei) ∼ N(0,Σ⊗ I). αi is r× n, βi is n× r and Γi is [n(p− 1)]× n.

Following Koop, León-González and Strachan (2010) we next introduce non-
identified r × r symmetric positive definite matrices Di and define α∗i = D−1

i αi
and β∗i = βiDi where α∗i is r × n and β∗i is n × r. Since αi and βi always occur in
product form and βiα = βiDiD

−1
i αi = β∗iα

∗
i this does not affect the model which

now can be written as:

Yi = Xiβ
∗
iα
∗
i +WiΓi + Ei, i = 1, . . . ,M. (A2)

Prior Distributions

1. {α∗i }: In regimes with no cointegration the {α∗i } are set to zero. For cointe-
grated regimes, we assume the following shrinkage prior:

a∗i ≡ vec(α∗i ) ∼ N
(

0, η−1

α
Irn

)
, i = 1, . . . ,M. (A3)

In our application we set η
α

= 10.

2. {β∗i }: In regimes with no cointegration the {β∗i } are set to zero. Our prior in
the case of cointegration but with the Fisher effect not imposed is:

b∗i ≡ vec(β∗i ) ∼ N
(

0, τ
1

rn Irn

)
, i = 1, . . . ,M. (A4)

The prior we use for restricting the cointegration space in accordance with the
Fisher effect is:

b∗i ≡ vec(β∗i ) ∼ N [0, Ir ⊗ (HH ′ + τ H⊥H
′
⊥)] , i = 1, . . . ,M. (A5)
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The matrix H that imposes the Fisher effect is given by H = H̃(H̃ ′H̃)−
1
2

with H̃ = (1,−1)′. The transformation makes H orthogonal. The dispersion
of the prior is controlled by the scalar τ ∈ [0, 1] with τ = 0 dogmatically
imposing the restrictions expressed by H on the cointegrating space and τ = 1
being noninformative. As discussed in Jochmann, Koop, León-González and
Strachan (2011), in some cases there are some problems with setting τ = 0
and accordingly we recommend setting τ to a small value in order to “almost
impose” a restriction. In our application we choose τ = 0.05. Note that τ
appears in (A4) so that both priors have the same scale.

3. {Γi}: We assume the following shrinkage prior for {Γi}:

c∗i ≡ vec(Γi) ∼ N
(

0, η−1

Γ
In2(p−1)

)
, i = 1, . . . ,M. (A6)

For our application we choose η
Γ

= 10.

4. {Σi}: We use an inverted Wishart prior:

Σi ∼ InvWishart(ν, S), i = 1, . . . ,M. (A7)

In the application we set ν = 13 and S = 10I2. It follows that E(Σi) = I2.

5. {ξij}: In the case of structural breaks we use the following Beta prior distribu-
tions:

ξii ∼ Beta(a, b), i = 1, . . . ,M − 1. (A8)

In our application we set a = 10 and b = 0.1. For the Markov switching models
we assume

ξi· ∼ Dirichlet(ci1, . . . , ciM), i = 1, . . . ,M. (A9)

In our application we choose cij = 10 if i = j and cij = 1 otherwise.

Posterior Simulation

We sample from the posterior distribution with a Gibbs sampler. Given initial con-
ditions, the data, and in each block the other parameters, the algorithm comprises
the following steps:

1. Structural break model:
Draw ST using Chib’s (1998) algorithm.
Markov switching model:
Draw ST using Chib’s (1996) algorithm.
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2. Structural break model:
Draw ξi from Beta

[
a+Nii(S

T ), b+ 1
]

for i = 1, . . . ,M − 1, where Nii(S
T ) is

the number of one-step transitions from state i to state i in the sequence ST .
Markov switching model:
Draw ξi· from Dirichlet

[
ci1 +Ni1(ST ), . . . , ciM +NiM(ST )

]
for i = 1, . . . ,M ,

where Nij(S
T ) is the number of one-step transitions from state i to state j in

the sequence ST .

3. Draw a∗i for i = 1, . . . ,M : If regime i is not cointegrated, set a∗i equal to zero.
Otherwise, draw a∗i from N(ai, Ai) with

Ai =
[(

Σ−1
i ⊗ β

∗
i
′X ′iXiβ

∗
i

)
+ η

α
Irn

]−1

(A10)

and
ai = Ai(Σ

−1
i ⊗ β

∗
i
′X ′i)vec (Yi −WiΓi) . (A11)

4. Draw b∗i for i = 1, . . . ,M : If regime i is not cointegrated, set b∗i equal to zero.
Otherwise, draw b∗i from N(bi, Bi) with

Bi =
(
[(α∗iΣ

−1
i α∗i

′)⊗ (X ′iXi)] + P−1
)−1

(A12)

and
bi = Bi(α

∗
iΣ
−1 ⊗X ′i)vec(Yi −WiΓi). (A13)

In the case of no restriction on the cointegration space P is defined as:

P = τ
1

rn Irn, (A14)

with the Fisher effect imposed it is defined as:

P = Ir ⊗ (HH ′ + τ H⊥H
′
⊥). (A15)

5. Draw c∗i for i = 1, . . . ,M from N(ci, Ci) with

Ci =
[(

Σ−1
i ⊗W ′

iWi

)
+ ηΓIn2(p−1)

]−1
(A16)

and
ci = Ci(Σ

−1
i ⊗W ′

i )vec (Yi −Xiβ
∗
iα
∗
i ) . (A17)

6. Draw Σi for i = 1, . . . ,M from InvWishart(νi, Si) with

νi = ν + Ti (A18)

and
Si = S + (Yi −Xiβ

∗
iα
∗
i −WiΓi)

′(Yi −Xiβ
∗
iα
∗
i −WiΓi). (A19)
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Marginal Likelihood Calculation using the Bridge Sampler

Given B MCMC sampler draws {θ(b)
K }, b = 1, . . . , B, from the posterior distribution

p(θK |y,MK), the bridge sampler consists of the following steps:

1. Simulation. Construct the unsupervised importance density q(θK) discussed

in Frühwirth-Schnatter (2004, Section 3.4). Draw L draws {θ̃(l)

K }, l = 1, . . . , L,
from this importance density.

2. Evaluation. Calculate both the non-normalized posterior p?(θK |y,MK) and
the importance density q(θK) at the draws both from the posterior and the
importance density.

3. Iteration. Get a starting value for the estimate of the marginal likelihood p̂0

(for example the importance sampling estimator). Run the following recursion
until convergence has been achieved:

p̂t =

1
L

∑L
l=1

p?

„
θ̃
(l)
K

∣∣y,MK

«
Lq

“
θ̃
(l)
K

”
+Bp?

„
θ̃
(l)
K

∣∣y,MK

«/
p̂t−1

1
B

∑B
b=1

q
“
θ
(b)
K

”
Lq

“
θ
(b)
K

”
+Bp?

„
θ
(b)
K

∣∣y,MK

«/
p̂t−1

. (A20)
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