
 

STRATHCLYDE 
 

DISCUSSION PAPERS IN ECONOMICS 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

DEPARTMENT OF ECONOMICS 
UNIVERSITY OF STRATHCLYDE 

GLASGOW 

 
UK MACROECONOMIC FORECASTING WITH MANY 

PREDICTORS: WHICH MODELS FORECAST BEST AND 
WHEN DO THEY DO SO? 

 
BY 

 
GARY KOOP AND DIMITRIS KOROBILIS 

 
 
 

NO. 11-18 
 

 



UK Macroeconomic Forecasting with Many Predictors: Which
Models Forecast Best and When Do They Do So?�

Gary Koop
University of Strathclyde

Dimitris Korobilis
University of Strathclyde

July 29, 2009

ABSTRACT

Block factor methods o¤er an attractive approach to forecasting with many predictors. These extract
the information in these predictors into factors re�ecting di¤erent blocks of variables (e.g. a price block,
a housing block, a �nancial block, etc.). However, a forecasting model which simply includes all blocks
as predictors risks being over-parameterized. Thus, it is desirable to use a methodology which allows
for di¤erent parsimonious forecasting models to hold at di¤erent points in time. In this paper, we use
dynamic model averaging and dynamic model selection to achieve this goal. These methods automatically
alter the weights attached to di¤erent forecasting model as evidence comes in about which has forecast
well in the recent past. In an empirical study involving forecasting output and in�ation using 139
UK monthly time series variables, we �nd that the set of predictors changes substantially over time.
Furthermore, our results show that dynamic model averaging and model selection can greatly improve
forecast performance relative to traditional forecasting methods. Keywords: Bayesian, state space

model, factor model, dynamic model averaging JEL Classi�cation: E31, E37, C11, C53

�Both authors are Fellows at the Rimini Centre for Economic Analysis. We would like to thank George Kapetanios and
the Bank of England Econometrics group for their help and the provision of the data.
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1 Introduction

Macroeconomists interested in forecasting variables such as output growth and in�ation often have many
potential predictors. For instance, Stock and Watson (2002) forecast various US macroeconomic variables
using up to 215 predictors. Since the pioneering work of Geweke (1977), dynamic factor models have
typically been used to deal with the problems caused by this proliferation of predictors. These models
extract the common �uctuations in the large number of predictors into a much smaller number of factors.
Stock and Watson (2006) is a recent survey paper on forecasting using dynamic factor models. In the
UK, Kapetanios, Labbard and Price (2009) discuss the Bank of England�s suite of forecasting models,
including a discussion of dynamic factor methods.1 Dynamic factor methods involve a forecasting model
of the form (see, e.g., Stock and Watson, 2002):

yt = 
 (L) yt + � (L) ft + "t; (1)

where ft is an q�vector of factors, 
 (L) = 
1L+ ::+ 
pLp and � (L) = �1L+ ::+ �pLp are polynomials
in the lag operator.2

Dynamic factor models have been used successfully in a wide variety of forecasting exercises. However,
they su¤er from the drawback that coe¢ cients cannot easily be interpreted in terms of the underlying
macroeconomic variables. For this reason, dynamic factor models with a block structure have recently
been proposed (e.g. Ng, Moench and Potter, 2008). These are motivated by the observation that the large
panels of macroeconomic time series available for forecasting often fall naturally into di¤erent groups or
blocks. For instance, the researcher might have several di¤erent measures of prices (the price block),
several di¤erent measures of demand (the demand block), di¤erent interest rates and stock prices (the
�nancial block), etc. In such cases, factor methods can be used on the variables in each block separately,
resulting in a set of factors each of which has a macroeconomic interpretation (e.g. the price factor, the
demand factor, the �nancial factor, etc.). In this paper, we adopt such a blocking of variables using the
139 monthly variables (1990:1 through 2008:11) from the Bank of England�s forecasting suite. When (1)
is extended to allow for block factors, then the forecasting equation takes the form:

yt = 
 (L) yt +

BX
b=1

�(b) (L) f
(b)
t + "t; (2)

where f (b)t for b = 1; ::; B denotes the factor extracted from the bth block of predictors.
A drawback in all the models discussed so far is that they assume that parameters are constant.

To some extent, the use of recursive or rolling forecasting methods can account for time variation in
coe¢ cients. But recent research (e.g. Groen, Paap and Ravazzolo, 2008) argues strongly that it is better to
build a formal model of time variation in parameters rather to than rely of recursive or rolling methods to
accurately pick up parameter shifts. Such time-varying parameter (TVP) models are commonly estimated
using state space methods (see, e.g., Cogley and Sargent, 2005, or Cogley, Morozov and Sargent, 2005).
In our context, this would involves extending (2) as:

yt = 
t (L) yt +
BX
b=1

�
(b)
t (L) f

(b)
t + "t; (3)

and adding a state equation to model the evolution of coe¢ cients:

�t+1 = �t + �t (4)

where �t is a vector containing all the coe¢ cients in �t (L) and �
(b)
t . As an example, a commonly

expressed view of in�ation is that its persistence has changed markedly since the 1970s. Since persistence
depends on �t (L), allowing for its time variation is potentially of great importance in developing a good
model for forecasting in�ation.

1See also Artis, Bannerjee and Macellino (2005) for an empirical forecasting exercise using UK data and Marcellino,
Stock and Watson (2003) for a Euro area exercise.

2This model is used for one-step ahead forecasting. When forecasting h periods ahead the direct method can be used
and 
 (L) and � (L) re-de�ned so that the right-hand side includes variables lagged h periods.
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However, even forecasting models such as that given by (3) and (4) su¤er from the criticism that the
same set of predictors is used at all points in time. Papers such as Pesaran and Timmermann (1995)
present forecasting models where the set of predictors can change over time and show this to be of
importance in helping to improve forecast performance. For instance, when forecasting in�ation, it is
possible that the predictors in the 1970s were di¤erent than in the 1990s. Or it is possible that the
predictors in recessions are di¤erent than the predictors in expansion. We want a forecasting framework
which allows for this.
This paper addresses all these issues. That is, we develop a forecasting model which begins with a

block dynamic factor model such as (2), extends it to have time variation in coe¢ cients through a model
such as (3) and (4) but also allows for the forecasting model to change over time through a technique
known as dynamic model averaging (DMA). This framework is applied in an exercise involving monthly
UK data where we forecast output growth and in�ation.
In terms of the econometrics, the major innovation is the use of DMA and we explain it in detail below.

But the basic issues that must be addressed when doing DMA can be explained brie�y as follows: In
macroeconomic forecasting exercises such as the present one, the number of predictors can be very large.
Even when reducing the set of predictors by extracting common factors and using constant coe¢ cient
models such as (2), we can still end up with a large number of potential models. For instance, even if
we have a constant parameter model and the only predictors are the �rst factor from each of B blocks of
factors (in our case we have B = 8) we will end up with 2B models when we de�ne each model by whether
each factor is included or excluded from the forecasting model. If the researcher wants to select a single
model from this huge set through sequential hypothesis testing procedures, she can potentially run into
serious pre-test and data mining problems. If the researcher wishes to do model averaging, substantial
computational problems arise (see Koop and Potter, 2004, for a discussion of these issues). When we
want to allow for the forecasting model to change over time, then such computational problems increase
hugely. With B potential predictors, the number of combinations of models which must be estimated in
order to forecast through time � is of the order 2B� . Estimating this many models when models are of
the form given by (3) and (4) will typically be computationally infeasible. Accordingly, in this paper,
we consider a strategy developed in the engineering literature by Raftery, Karny, Andrysek and Ettler
(2007) which they refer to as dynamic model averaging or DMA (although, as discussed below, it can
also be used for dynamic model selection or DMS). The method they propose seems ideally suited for our
forecasting exercise since it satis�es all the desirable features outlined above. That is, it allows for the
forecasting model to change over time (i.e. di¤erent predictors can be relevant at di¤erent times) while,
at the same time, allowing for coe¢ cients in each model to evolve over time. It involves only standard
econometric methods for state space models such as the Kalman �lter and simulation smoother but (via
some empirically-sensible approximations) achieves vast gains in computational e¢ ciency so as to allow
DMA or DMS to be done in real time.
Using DMA and DMS in our block factor model with time varying coe¢ cients, we �nd substantial

improvements in forecast performance relative to alternative forecasting strategies. Furthemore, especially
for in�ation, the set of predictors in the best forecasting model varies substantially over time in a manner
which conventional modelling strategies would miss.

2 Dynamic Model Averaging

To explain how DMA and DMS work, we begin by writing the block dynamic factor model with time
varying coe¢ cients given by (3) and (4) in standard state space form notation:

yt = Zt�t + "t (5)

�t+1 = �t + �t;

where yt is the dependent variable being forecast, Zt is a 1 �m vector of observations on explanatory
variables that are available to forecast yt. The discussion below relates to the case where we are forecasting
one period in the future (h = 1) and, thus, Zt will contain an intercept, yt�1,..,yt�py+1; f

(b)
t�1; ::; f

(b)
t�pf (for

b = 1; ::; B) where py is the lag length for the dependent variable and pf the lag length for the factors.

3



When forecasting h > 1 periods ahead, we use the direct method and variables are lagged appropriately
(i.e. Zt contains information lagged h periods).
We construct f (b)t using principal components methods3 involving all the variables in block b.4 Thus,

all elements of Zt can be interpreted as exogenous or lagged dependent variables. �t is an m � 1 vector
of regression coe¢ cients, "t is N (0;Ht) and �t is N (0; Qt). This is a state space model of the sort
commonly used in empirical macroeconomics (see, e.g., among many others, Cogley and Sargent, 2005,
Cogley, Morozov and Sargent, 2005, Primiceri, 2005). Standard methods (e.g. involving the Kalman
�lter and smoother) for estimation and prediction exist with such models (and are given in our Technical
Appendix).
However, (5) assumes that the same explanatory variables can be used for forecasting at all points in

time. In our introduction, we have explained why this might not be a good idea in a forecasting exercise.
Furthermore, our empirical work will show that models such as (5) which simply maintain the same set of
predictors in all time periods forecast very poorly due to over-parameterization problems. Accordingly,
we allow for K models which are characterized by having di¤erent subsets of the explanatory variables,
Z
(k)
t � Zt for k = 1; ::;K,

yt = Z
(k)
t �

(k)
t + "

(k)
t (6)

�
(k)
t+1 = �

(k)
t + �

(k)
t ;

"
(k)
t is N

�
0;H

(k)
t

�
and �(k)t is N

�
0; Q

(k)
t

�
. The fact that we are letting di¤erent models hold at each

point in time and will do model averaging justi�es the terminology DMA. Alternatively, we can select
the single best model at each point in time and do DMS.
We have now de�ned the set of models we will work with and, for each model, standard econometric

methods can be used to forecast. However, to complete our algorithm, we need to specify how models
evolve over time (i.e. we need a way of specifying how explanatory variables enter/leave the model in
real time). To explain the issues relating to this let Lt 2 f1; 2; ::;Kg denote which model applies at
time t. When the number of models is small, a natural speci�cation would involve a transition matrix,
P , with elements pij = Pr (Lt = ijLt�1 = j) for i; j = 1; ::;K. That is, if model j holds at time t � 1,
then pij speci�es the probability that the forecasting model will switch to model i at time t. Such
Markov switching speci�cations are widely used in many contexts in econometrics and inference in such
models is well-understood. The problem with our using such a speci�cation in our case is that, when the
number of models gets large, it becomes computationally infeasible. In our empirical work, we will have
K = 2B with B = 8 and accordingly P will be a 256 � 256 matrix. Clearly, this will lead to imprecise
inferences and very slow computation.5 These are the reasons why DMA has not been done previously
in substantive empirical problems in macroeconomics. Recently, Raftery, Karny, Andrysek and Ettler
(2007) have proposed an approximate method in an industrial application. Their approximations have
the huge advantage that Kalman �ltering and smoothing methods can be used, allowing for fast real time
forecasting. It is this approximate method we use in this paper.
Complete details of the Raftery et al (2007) algorithm are given in the Technical Appendix. Here we

explain only the main ideas. In general, Bayesian estimation of state space models such as (5) involve
Markov Chain Monte Carlo (MCMC) methods which take draws of the states conditional on the other
model parameters (such as Ht and Qt) and then draw the other parameters conditional on the states.
With the large number of models we are working with, it is computationally impossible to use such MCMC
methods. Accordingly, one aspect of the Raftery et al (2007) algorithm is to avoid MCMC. They do this
by obtaining a plug-in estimate of Ht and assuming Qt =

�
1� ��1

�
�t�1 where 0 < � � 1 and �t is the

covariance matrix of the estimation error in the Kalman �lter (i.e. the estimation error is
�
�t � b�t� where

3 In our recursive forecasting exercise, we extract factors recursively so that the factors at time � are constructed using
information through time � .

4The alternative would be to treat f (b)t as a latent variable and simulate it in the context of a Markov Chain Monte
Carlo algorithm as in Ng, Moench and Potter (2008). This is theoretically straightforward, but computationally infeasible
when doing DMA with a reasonable number of blocks.

5 In related models, Chen and Liu (2000) show how computation time up to t typically involves mixing over Kt terms.
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b�t is the �ltered estimate, see Technical Appendix). Such approximations have been used frequently in
the state space literature. Raftery et al (2007) provide a detailed justi�cation of this approximation and
relate the resulting approach to statistical methods such as age-weighting and windowing. � is known
as a �forgetting factor�, which is motivated by the fact that this speci�cation implies that observations
j periods in the past have weight �j . An alternative way of interpreting � is to note that it implies an
e¤ective window size of 1

1�� . It is common to choose a value of � near one, suggesting a gradual evolution
of coe¢ cients. � = 1 implies �t is constant over time. As � decreases, a greater and greater degree of
coe¢ cient change is allowed for. As � ! 0 we end up in a case where only the most recent observation
is of use for forecasting (or equivalently, large structural breaks are occurring in every time period).
The second aspect of the Raftery et al (2007) algorithm involves an approximation that allows for

the fast and e¢ cient calculation of posterior model probabilities at each point in time. As notation,
let �tjr;k = Pr (Lt = kjyr) denote the probability that model k applies at time t using information
through time r where this information is denoted by yr = (y1; ::; yr)

0
:When forecasting at time t, we

can use �tjt�1;k to either do forecast averaging or forecasting using a single best model. That is, DMS
can be done by simply selecting the model with highest �tjt�1;k to be the forecasting model at time t.
Alternatively, DMA involves forecasting from all K models and using �tjt�1;k for k = 1; ::;K as weights
when constructing an average forecast.
In general, we can obtain �tjt�1;k in an iterative manner. That is, we have the relationship

�t�1jt�1;k =
�t�1jt�2;kpk

�
yt�1jyt�2

�PK
s=1 �t�1jt�2;lps (yt�1jyt�2)

; (7)

where ps
�
yt�1jyt�2

�
is the predictive density for model s (as shown in the Technical Appendix this is

simply a Normal density) evaluated at yt�1. If we were to use a conventional Markov switching process
for the models (as described above) with transition probabilities such as P with elements pks then an
iterative algorithm combining (7) and

�tjt�1;k =
KX
s=1

�t�1jt�1;lpks (8)

can be immediately seen. However, as discussed previously, such a strategy is impossible in our case since
P is of too large a dimension. Raftery et al (2007) surmount this problem by replacing (8) by

�tjt�1;k =
��t�1jt�1;kPK
l=1 �

�
t�1jt�1;l

; (9)

where 0 < � � 1 is another forgetting factor similar to �. Its interpretation is similar to �, but in
terms of the evolution of models (not the evolution of states). Raftery et al (2007) and Smith and Miller
(1986) provide a detailed discussion for why this approximation is empirically sensible. Insight into the
interpretation of � is obtained by noting that (9) can be written as:

�tjt�1;k /
�
�t�1jt�2;kpk

�
yt�1jyt�2

���
=

t�1Y
i=1

�
pk
�
yt�ijyt�i�1

���i
:

It can be seen that �tjt�1;k will be larger and, thus, DMS will be more likely to select model k at
time t if it has forecast well in the recent past (where forecast performance is measured by the predictive
density, pk

�
yt�ijyt�i�1

�
). The interpretation of �recent past� is controlled by the forgetting factor, �

and we have the same exponential decay at the rate �i for observations i periods ago as we had associated
with �. Thus, if � = 0:99 (our benchmark value and also the value used by Raftery et al, 2007) and
we are using monthly data, forecast performance �ve years ago receives about 50% as much weight as
forecast performance last period. Forecast performance one year ago receives about 90% as much weight
as last month�s performance. If � = 0:95, then forecast performance �ve years ago receives only about 5%
as much weight as last period�s performance. These considerations suggest that we focus on the interval
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� 2 (0:95; 0:99) with our benchmark choice being � = 0:99. Note also that � = 1 implies that the same
model is used in every time period. For similar reasons, we will also focus on � 2 (0:95; 0:99) with our
benchmark choice being � = 0:99.
Note that one could choose values for � and � based on forecast performance in some way, but this

is would bias our results in favour of DMA and is not a valid procedure for out-of-sample forecasting.
Alternatively when forecasting at time � we could consider a grid of values for � and � and select the
value which yielded the highest value for an information criterion or the marginal likelihood. In essence,
this amounts to treating � and � as unknown parameters. However, this would greatly add to the
computational burden, perhaps so much as to make it impossible to do forecasting in real time. Hence,
we follow Raftery et al (2007) and simply select values for the forgetting factors, but our Empirical
Appendix carries out a sensitivity analysis.
Complete details on the Raftery et al (2007) approach to DMA are provided in the Technical Appendix.

The purpose of this section was to explain the basic ideas of DMA and DMS. In particular, we have shown
why it is necessary to use such approximations; have stressed the fact that with these approximations
no MCMC algorithm is required (only Kalman �ltering and smoothing or similar iterative updating
algorithms); and provided explanation of the forgetting factors � and � which are important in DMA
and DMS.
Finally, our treatment of Ht is similar to that used by Raftery et al (2007) who use a plug-in method

where we simply replace Ht by an estimate bHt. Details are provided in the Technical Appendix. We
use a rolling version of their estimator to allow for changes in volatility. The reader interested in further
discussion of DMA, including its relationship with conventional Bayesian model averaging (BMA), is
referred to Raftery et al (2007).

3 Empirical Work

3.1 Data and Modelling Issues

The Bank of England maintains a data set of many variables that it uses in its suite of UK forecasting
models (see Kapetanios, Labbard and Price, 2009). From this we have taken the 139 monthly variables
for which complete data is available from 1990M1 through 2008M11. The variables fall naturally into
eight categories that we use as our blocks from which we extract factors. Thus, we have an international
block which contains various US and European output, unemployment and price variables. The output
block contains various indices of production as well as surveys of manufacturers on their present output
plans. The price block contains various measures of in�ation and in�ation expectations as well as variables
relating to wages and the price of oil. The demand block uses various measures of consumer con�dence
and sales. The �nancial block has stock prices, dividend yields, the exchange rates for several important
currencies relative to the £ and various interest rates and spreads. The housing block contains variables
re�ecting house prices and sales. The money block contains various measures of the money stock and
bank deposits and the labour block contains various measures of employment and unemployment. When
doing factor analysis it is common to transform all variables all variables to stationarity. We have done
this, making the same choices as the Bank of England for the transformations. The complete list of
variables and transformations used in given in the Data Appendix.
Remember that our models are all based on (3) and involve lags of the dependent variable, factors

from each block as well as lags of these factors. We extract the �rst factor for each block and include it
and one lag of it as potential predictors as well as two lags of the dependent variable (a choice which is
adequate to clean up any autocorrelation in the errors) and an intercept. Note that this strategy leads
to 18 potential predictors. All of our models in (6) will involve subsets of these predictors. If (as done in
many implementations of DMA and BMA) we de�ne our models according to whether each individual
predictor is included or excluded from the model we would end up with 218 di¤erent models. Even
though DMA leads to great computational simpli�cations, it still can be computationally demanding and
handling this many models is infeasible. For this reason we limit our set of models by assuming: i) all
models contain the intercept and lags of the dependent variable and ii) models are de�ned by whether
each factor and its lag are jointly included or excluded. So, for example, we have models where the price
factor and its lag are included and models where neither the price factor nor its lag are included. But
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we rule out models which contain only the price factor (but not its lag) or only the lagged price factor.
With these assumptions we have 28 models.
We use principal components to extract factors using all the variables in each block. We forecast

in�ation (the annual percentage change in the all-items CPI) and output growth (the percentage change
in the index of production for all production industries). When forecasting in�ation, the all-items CPI
variable is deleted from the price block. When forecasting output growth, the index of production for all
production industries is deleted from the output block.
Our main results are for � = 0:99 and � = 0:99, but we do discuss sensitivity to these choices in an

Empirical Appendix. The Kalman �lter and iterative algorithm for drawing model probabilities are both
initialized di¤usely as described in the Technical Appendix.

3.2 Forecasting Performance

We compare our forecasts using DMA and DMS to several alternative forecasting methods. These can
be interpreted as special cases of DMA or DMS, but either with particular choices for single models
or particular choices for � and �. The �rst two of our alternative methods allow for time variation of
parameters, but no time variation in the models. These are an AR(2) model with time varying parameters
(labelled TVP-AR(2)) and the TVP block factor model in (3) including all the predictors (labelled TVP-
Factor). The TVP part of the model is speci�ed using � = 0:99. Our third alternative uses DMA,
but does not allow the coe¢ cients to vary over time in each model (i.e. this is a special case of DMA
where � = 1, but � = 0:99). Finally, we present results using Bayesian model averaging (BMA) which
is a special case of DMA where � = � = 1. We evaluate forecast performance over the period 1992M3
through 2008M11.
The standard metric of Bayesian forecast comparison is the sum of log predictive likelihoods (see, e.g.,

Geweke and Amisano, 2007). This has the advantage that it involves entire predictive distribution and
not simply point forecasts. The predictive likelihood is the predictive density for yt given data through
time t � 1 evaluated at the actual outcome (i.e. in model k the predictive density is pk

�
ytjyt�1

�
). The

formula for the predictive density is given in the Technical Appendix. In addition to the sum of log
predictive likelihoods, we also present results for two standard measures of the performance of the point
forecasts, mean squared forecast error and mean absolute forecast error de�ned as:

MSFE =

PT
�=�0

[y� � E (y� jData��h)]2

T � �0 + 1
and

MAFE =

PT
�=�0+1

jy� � E (y� jData��h)j
T � �0 + 1

:

where Data��h denotes the information available through period � � h where h is the forecast horizon
and E (y� jData��h) is the point forecast of y� .
Tables 1 and 2 present these measures of forecast comparison for three forecast horizons, h = 1; 6

and 12, for output growth and in�ation, respectively. The main story coming out of these tables is a
strong one: DMA and DMS almost always forecast better than the other approaches and never forecast
much worse than the best alternative. Particularly for output growth, the forecasting gains of DMA and
DMS relative to the alternative approaches are quite substantial. This story comes through strongest in
the log predictive likelihoods where there is only one case where DMA and DMS are not the best two
forecasting methods. The exception is for in�ation forecasting for h = 1. In this case, the parsimonious
TVP-AR(2) has (by a small amount) the highest sum of log predictive likelihoods. However, this result
does not carry over to MAFE and MSFE where DMA and DMS show a better forecast performance.
A second story is that time-varying parameter models which simply include all potential predictors

consistently perform extremely poorly. This clearly shows the bene�ts of DMA. A naive researcher might
think that simply working with a single �exible TVP model such as (3) and (4) would be adequate since
it might be able to approximate what is done in DMA. That is, TVP models allow for the marginal
e¤ects of predictors to evolve which, in theory, could allow for predictors to (approximately) drop in or
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out of the model over time (i.e. their marginal e¤ects could be near zero in some time periods but evolve
to having more substantive e¤ects in others). This is clearly not happening in this data set. DMA is
adding something of great bene�t for forecasting. The particularly poor performance of the TVP-Factor
model suggests one reason why this is so: the TVP-Factor model is making some big forecast errors at
some points in time. This is probably due to a changes in forecasting model and/or structural breaks
which the TVP-Factor model cannot adjust to quickly enough. This is a point we will return to later in
our discussion of how the forecasting model changes over time.
A third story relates to forecast shrinkage. The fact that the parsimonious TVP-AR(2) often forecasts

well, typically much better than the TVP-Factor approach which includes all the predictors, indicates the
bene�t of shrinkage. The gains in forecast performance one would expect the extra information in the
factors to provide is clearly outweighed by the fact that models such as (3) and (4), or even (2), introduce
a large number of new parameters. It is only through use of DMA or DMS that we can realize the
bene�ts of this extra information, since most of these new parameters are shrunk to zero. And it is worth
emphasizing that the way this shrinkage occurs is changing over time. It is worth stressing, however, the
extremely poor forecast performance of the TVP-AR(2) model for in�ation when h = 12. In this case,
it is clear that the predictors do contain important information that the TVP-AR(2) is missing. This
suggests that, while DMA and DMS are safe forecasting options (they typically forecast best, but even
when not the best, they never forecast poorly relative to alternative approaches), extremely parsimonious
models like the TVP-AR(2) are riskier. Even though they often forecast well, sometimes their forecasts
are way o¤.
DMA and DMS allow for variation in models and variation in parameters. Our fourth story relates

to the relative roles of these two aspects in improving forecast performance. Tables 1 and 2 (with some
exceptions) indicate that DMA with constant parameters performs fairly well, usually beating BMA
(which has no variation in either parameters or models) by a substantial amount.6 This suggests that
variation in models is more important than variation in parameters in the good forecast performance of
DMA and DMS.
Finally, what do the tables say about the relative forecast performance of DMA and DMS? In this

regard, there is no clear pattern. Sometimes DMA forecasts better and sometimes DMS forecasts better
(and sometimes the story of log-predictive likelihoods is di¤erent than the story told by MAFEs and
MFSEs).

6We should stress that all models are estimated recursively, so statements like �no variation in either parameters or
models� apply for a given forecast time, � .
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Table 1: Measures of Forecast Performance (Output growth)
Forecast
Method

Sum of log
pred. like.

MSFE MAFE

h = 1
DMA (� = � = 0:99) -200.720 97.501 98.550
DMS (� = � = 0:99) -200.390 99.106 99.346
TVP-Block -228.514 119.151 112.204
TVP-AR(2) -207.214 104.559 102.439
DMA (� = 1; � = 0:99) -201.970 98.427 98.795
BMA (DMA with � = � = 1) -206.330 105.020 101.240

h = 6
DMA (� = � = 0:99) -217.430 115.700 110.910
DMS (� = � = 0:99) -217.480 116.020 110.910
TVP-Block -258.235 182.993 138.614
TVP-AR(2) -221.453 116.018 110.909
DMA (� = 1; � = 0:99) -217.640 115.660 110.950
BMA (DMA with � = � = 1) -217.510 115.790 111.040

h = 12
DMA (� = � = 0:99) -226.920 117.540 110.250
DMS (� = � = 0:99) -227.520 119.560 112.160
TVP-Block -265.8394 189.564 138.4474
TVP-AR(2) -232.1462 120.54 112.3358
DMA (� = 1; � = 0:99) -227.370 118.290 110.900
BMA (DMA with � = � = 1) -228.550 120.480 111.940
Table 2: Measures of Forecast Performance (In�ation)
Forecast
Method

Sum of log
pred. like.

MSFE MAFE

h = 1
DMA (� = � = 0:99) -13.118 9.637 32.722
DMS (� = � = 0:99) -12.615 9.445 32.408
TVP-Block -22.716 13.396 38.727
TVP-AR(2) -10.537 9.838 32.785
DMA (� = 1; � = 0:99) -14.631 9.639 32.628
BMA (DMA with � = � = 1) -21.437 9.973 33.065

h = 6
DMA (� = � = 0:99) -196.780 75.870 89.099
DMS (� = � = 0:99) -196.380 81.795 95.183
TVP-Block -216.125 106.112 103.547
TVP-AR(2) -202.954 83.351 97.057
DMA (� = 1; � = 0:99) -207.520 88.206 97.246
BMA (DMA with � = � = 1) -215.750 103.150 105.200

h = 12
DMA (� = � = 0:99) -270.870 190.020 134.390
DMS (� = � = 0:99) -271.840 194.780 135.550
TVP-Block -280.243 202.460 147.685
TVP-AR(2) -567.132 961.581 272.127
DMA (� = 1; � = 0:99) -287.460 206.980 139.180
BMA (DMA with � = � = 1) -301.540 234.100 148.760
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3.3 Which are the Most Important Predictors and Does this Change over
Time?

Of the di¤erent forecasting approaches given in the preceding section, only DMA and DMS allow for
di¤erent forecasting models at di¤erent times. Accordingly, in this section we present results only for
these two approaches. Given the huge number of models we cannot possibly present empirical results for
every model. Instead we summarize results in two di¤erent ways. We begin with �gures which illustrate
that, although we have 8 factor blocks which could potentially be selected, most of the time the best
model used by DMS is much more parsimonious with only a few of these blocks. Formally, if we let Sizek
be the number of blocks of factors in model k, then

E (Sizet) =
KX
k=1

�tjt�1;kSizek

can be interpreted as the expected or average number of blocks of factors used by DMA at time t.
Figures 1 and 2 plots E (Sizet) for our six empirical exercises (i.e. two forecast variables and three
forecast horizons).
The patterns in Figures 1 and 2 both tend to indicate that, as time goes by and more data is available

for estimation, more factors are chosen (although, for in�ation, this tendency stops after about 2000).
This is as expected. Both Figures 1 and 2 are indicating a high degree of parsimony (with the exception
of in�ation forecasting at long horizons, we always have E (Sizet) < 3:5), but are somewhat di¤erent
from one another. When forecasting output growth, DMA is placing most weight on forecasting models
with only 1 or 2 factor blocks (and, at the beginning of the sample, the TVP-AR(2) with no factor
blocks at all is receiving most of the posterior weight). When in�ation is the dependent variable, DMA
is choosing somewhat less parsimonious models, but for h = 1 and h = 6 DMA is placing most weight
on models with two or three factors. The interesting exception is in�ation forecasting for h = 12 where
DMA is choosing less parsimonious models with up to �ve factor blocks. This explains the extremely
poor forecast performance of the TVP-AR(2) for this case noted above (see Table 2).
Figures 1 and 2 present evidence that the best forecasting model is changing over time and that DMA

and DMS tend to be quite parsimonious. However, they shed little light on which factor blocks are the
most important at various points in time. To shed light on this issue, remember that the Raftery et
al (2007) DMA algorithm provides us with time-varying probabilities associated with every model (i.e.
�tjt�1;k for k = 1; ::;K). For any factor block at any point in time, we can use these to calculate the
total probability associated with models containing a particular block factor (and its lag). That is, for
b = 1; ::; B, we can calculate

P
k�b �tjt�1;k where the notation implies the summation is taken over models

which include the bth factor block. Figures 3 through 8 plot these probabilities for our 8 factor blocks for
output growth and in�ation, respectively.
The patterns for output growth and in�ation are quite di¤erent, re�ecting the higher degree of par-

simony which DMA �nds when forecasting the former. For output growth (see Figures 3 through 5), we
are only occasionally �nding lines which go near one. But it is also the case that it is rare for the lines
in Figures 3 through 5 to be horizontal lines at zero. This indicates that there is no factor block which
is always or never an important predictor. For instance, for h = 1, after 2000, Figure 3 indicates that
DMA is averaging over many forecasting models with appreciable weight (e.g. more than 10%) attached
to models containing each of the 8 factor blocks. However, there is no one factor block that is always
an important predictor. That is, even the highest line (corresponding to the output block) in Figure 3,
never goes much above 0:50. Thus, the other 50% of the weight used by DMA when averaging forecasts
is coming from models which do not contain this most important of predictors.
For in�ation, the patterns are more complicated. In contrast to output growth, for much of our sample

period, there are variables which are clearly important predictors in the sense that some lines in Figure
6 through 8 are near one. This is particularly true for the price and money blocks. Remember that the
price block includes lagged information on wages, oil prices and the various disaggregated components of
the CPI. DMA is �nding information in this block of variables that is often helpful for predicting current
in�ation. However, the patterns in Figures 6 through 8 vary over time and across forecast horizons. For
instance, for h = 6 the price block is most important near the beginning of the sample, but for h = 1
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Figure 1: Figure 1: Expected Number of Predictors in Each Forecasting Exercise (Output growth)
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Figure 2: Figure 2: Expected Number of Predictors in Each Forecasting Exercise (In�ation)
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Figure 3: Figure 3: Total Probability of Models which Contain Each Factor Block (Output growth, h = 1)

and h = 12 it is most important in the latter half of the sample. For h = 12 we �nd that the price
block is almost always a very important predictor, except for a brief spell around 1998 where is becomes
completely unimportant. The money block is an important predictor at all forecast horizons after the
year 2000, but patterns before 2000 are more variable.
Clearly we are �nding a great deal of variation over time in terms of what the best predictors. Such

variation could not be modelled using conventional forecasting approaches or conventional theoretical
models. For instance, standard Phillips�curve arguments would imply that the unemployment rate is
always a good predictor for in�ation. If this were true, we would �nd the labour factor (which includes
various measures of the unemployment rate) to always be a good predictor for in�ation and the total
probability of models which contain the labour factor to be near one in Figures 6 through 8. We are
not �nding patterns such as this for the labour block (or for any other factor block) . Sometimes (i.e.
after 1998 for h = 12 ) we are �nding the labour factor to be important in forecasting in�ation, but not
at other times. But at most times, models which contain the labour factor will be allocated appreciable
(e.g. more than 10%) of the weight when doing DMA.
When forecasting in�ation, almost all of the factor blocks play an appreciable role at some time or

forecast horizon or another. Somewhat suprisingly, it is only the housing block which never receives ap-
preciable weight. The demand and �nancial blocks often come through as being important predictors (but
often are unimportant). The picture we are �nding is one where DMA is averaging over many parsimo-
nious models (as opposed to selecting just a few parsimonious models) and this set of models is changing
substantially over time. These characteristics would be hard to mimic in conventional approaches.
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Figure 4: Figure 4: Total Probability of Models which Contain Each Factor Block (Output growth, h = 6)

14



Figure 5: Figure 5: Total Probability of Models which Contain Each Factor Block (Output growth,
h = 12)
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Figure 6: Figure 6: Total Probability of Models which Contain Each Factor Block (In�ation, h = 1)
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Figure 7: Figure 7: Total Probability of Models which Contain Each Factor Block (In�ation, h = 6)
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Figure 8: Figure 8: Total Probability of Models which Contain Each Factor Block (In�ation, h = 12)
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4 Conclusions

In this paper, we have argued that DMA and DMS hold many attractions for the macroeconomic fore-
caster. They allow for the coe¢ cients in a model to evolve over time, but also allow for model used for
forecasting to change over time. In practice, this means that DMS switches between various parsimo-
nious models over time and DMA tends to place a great deal of weight on such parsimonious models.
The alternative of working with one general model, including all potential predictors, is unattractive
due to over-parameterization worries. The alternative of choosing one single parsimonious model is also
unattractive since a good parsimonious forecasting model at some times could be a bad model at other
times. But, to our knowledge, other than the regression-based US application of Koop and Korobilis
(2009), DMA and DMS have not been used by macroeconomic forecasters. Relative to our previous
work, the present paper extends the use of DMA and DMS to block factor models with the monthly data
used in the Bank of England�s forecasting suite. We �nd improvements in forecast performance relative
to several popular alternatives. Furthermore, the use of DMA and DMS provides insight on which factors
predict in�ation and output growth and whether they change over time. We �nd that DMA is averaging
over many di¤erent parsimonious models and the set of parsimonious models is changing substantially
over time. For output growth, there are no factor block which stand out as being a consistently important
predictor. But every factor block is playing a role in the DMA average forecast at some time or other.
For in�ation, the money and price blocks stand out as being fairly consistently important predictors
(although there are some times when they are not). But all the other factor blocks are important at
some times or for some forecast horizons. The general pattern, though, is one where the best forecasting
model is changing over time. This feature is automatically picked up by DMA or DMS, but not with
conventional forecast procedures.
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Technical Appendix
In this appendix, we describe the DMA algorithm of Raftery et al (2007). With one minor exception

(the treatment of Ht), our methods are identical to theirs and the reader is referred to their paper for
further details, explanation and motivation for their approach.
We begin with the standard state space model in (5). For given values of Ht and Qt, the Kalman

�lter and smoother can be used to carry out recursive estimation or forecasting. That is, if we let
yt = (y1; ::; yt)

0 then Kalman �ltering begins with the result that

�t�1jyt�1 � N
�b�t�1;�t�1� (10)

where formulae for b�t�1 and �t�1 are provided below and proceeds using:
�tjyt�1 � N

�b�t�1; Rt� ; (11)

where

Rt = �t�1 +Qt:

Raftery et al (2007) replaces this latter equation by:

Rt =
1

�
�t�1 (12)

or, equivalently, Qt =
�
1� ��1

�
�t�1 where 0 < � � 1.

The next step towards forecasting in this one model case involves:

�tjyt � N
�b�t;�t� ; (13)

where

b�t = b�t�1 +RtZt (Ht + ZtRtZ 0t)�1 �yt � Ztb�t�1� (14)

and

�t = Rt �RtZt (Ht + ZtRtZ 0t)
�1
ZtRt: (15)

Recursive forecasting is done using the predictive distribution

ytjyt�1 � N
�
Ztb�t�1;Ht + ZtRtZ 0t� : (16)

We now switch to the notation for the multi-model case in (6) and let �t denote the vector of all the
coe¢ cients in all the models. In the standard single model case, Kalman �ltering is based on (10), (11)
and (13). In the multi-model case, for model k, these three equations become:

�t�1jLt�1 = k; yt�1 � N
�b�(k)t�1;�(k)t�1� ; (17)

�tjLt = k; yt�1 � N
�b�(k)t�1; R(k)t �

(18)

and

�tjLt = k; yt � N
�b�(k)t ;�

(k)
t

�
; (19)

where b�(k)t ;�
(k)
t and R(k)t are obtained via Kalman �ltering in the usual way using (??), (14) and (15)

except with (k) superscripts added to denote model k. To make clear the notation in these equations,
note that, conditional on Lt = k, the prediction and updating equations will only provide information
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on �(k)t and not the full vector �t. Hence, we have only written (17), (18) and (19) in terms of the
distributions which hold for �(k)t .
The previous results were all conditional on Lt = k, and we need a method for unconditional prediction

(i.e. not conditional on a particular model). This is done as described in the body of the text. That is,
�tjt�1;k for k = 1:; ; :K can be used for averaging across models when forecasting at time t. It can be
calculated iteratively using (9) and (7). Recursive forecasting can be done by averaging over predictive
results for every model (obtained using (16) for each model) using �tjt�1;k. So, for instance, DMA point
predictions are given by:

E (ytjDatat�1) =
KX
k=1

�tjt�1;kZ
(k)
t
b�(k)t�1

where Datat�1 denotes all data information available at time t � 1. Predictive standard deviations can
be calculated using this and predictive second moments:

E
�
y2t jDatat�1

�
=

KX
k=1

�tjt�1;k

�
Z
(k)
t
b�(k)t�1�2 :

DMS proceeds by selecting the model with the highest value for �tjt�1;k at each point in time and
using it for forecasting.
All the recursions above are started by choosing initial values for �0j0;l, �

(s)
0 and �(s)0 for s = 1; ::;K.

In our empirical work we draw these from relatively di¤use priors for the initial conditions. In particular,
we set �0j0;l =

1
K (so that, initially, all models are equally likely), �(l)0 = 0 and �(l)0 = 10I.

The preceding discussion is all conditional on Ht. Raftery et al (2007) recommend a simple plug in
method where H(k)

t = H(k) and is replaced with a consistent estimate. When forecasting macroeconomic
variables, however, it is likely that the error variance is changing over time. In theory, we could use
a stochastic volatility or ARCH speci�cation for H(k)

t . However, to do this would greatly add to the
computational burden. Thus, we prefer a simple plug-in approach which is a rolling version of the
recursive method of Raftery et al (2007). To be precise, let

eH(k)
t =

1
t�t�

tX
j=t�+1

"�
yt � Z(k)t

b�(k)t�1�2 � Z(k)t R
(k)
t Z

(k)0
t

#
:

Raftery el al (2007) uses this formula with t� = 0, but we set t� = t � 20. To avoid the rare possibility
that eH(k)

t < 0, Raftery et al (2007) use bH(k)
t as an estimate of H(k)

t where:

bH(k)
t =

( eH(k)
t if eH(k)

t > 0bH(k)
t�1 otherwise

and we follow this practice.
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Empirical Appendix
The results in the body of the paper have � = � = 0:99. We also present special cases of DMA where

there is no time variation in parameters (� = 1; � = 0:99) and no time variation in either parameters or
models (� = � = 1). In this appendix, we present a wider range of results for both forgetting factors. As
discussed in the text, the interval �; � 2 [0:95; 1] is of most empirical interest.
****rewrite below
With regards to output growth, results are qualitatively the same as in Tables 1 and 2. If anything,

setting � = � = 0:90 slightly improves forecasting performance of DMA and DMS (although this choice
leads to much worse forecast performance for TVP-Factor). With regards to in�ation, results are quite
similar, although there is one exception. If we set the forgetting factors very high (0:99), then for h = 1,
we are �nding some evidence that our versions of AR(2) models forecast roughly as well as DMA or DMS.
But this does not occur for other forecast horizons or even slightly lower values for the forgetting factors.

Table A1: Sensitivity Analysis: Output Growth
Forecast
Method

Sum of log
pred. like.

MSFE MAFE

h = 1
DMA, � = � = 0:95 -197.200 87.155 95.129
DMS, � = � = 0:95 -176.450 81.181 89.393
DMA, � = 0:99; � = 0:95 -198.500 93.621 98.424
DMS, � = 0:99; � = 0:95 -194.400 92.568 99.535
DMA, � = 0:95; � = 0:99 -197.980 92.529 95.545
DMS, � = 0:95; � = 0:99 -178.750 79.670 87.277

h = 6
DMA, � = � = 0:95 -220.540 120.650 111.840
DMS, � = � = 0:95 -206.620 113.000 106.200
DMA, � = 0:99; � = 0:95 -218.360 115.300 109.920
DMS, � = 0:99; � = 0:95 -219.000 116.810 110.510
DMA, � = 0:95; � = 0:99 -218.790 118.440 110.380
DMS, � = 0:95; � = 0:99 -206.010 110.580 107.480

h = 12
DMA, � = � = 0:95 -225.310 111.110 107.840
DMS, � = � = 0:95 -208.850 104.940 104.790
DMA, � = 0:99; � = 0:95 -227.820 115.420 109.140
DMS, � = 0:99; � = 0:95 -224.910 115.480 109.640
DMA, � = 0:95; � = 0:99 -224.570 114.810 110.060
DMS, � = 0:95; � = 0:99 -208.250 104.740 105.730
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Table A2: Sensitivity Analysis: In�ation
Forecast
Method

Sum of log
pred. like.

MSFE MAFE

h = 1
DMA, � = � = 0:95 0.061 9.572 31.964
DMS, � = � = 0:95 21.985 8.370 30.113
DMA, � = 0:99; � = 0:95 -9.986 9.531 31.843
DMS, � = 0:99; � = 0:95 -6.191 9.467 31.340
DMA, � = 0:95; � = 0:99 -3.552 9.593 32.691
DMS, � = 0:95; � = 0:99 15.689 8.916 32.311

h = 6
DMA, � = � = 0:95 -150.270 53.067 74.600
DMS, � = � = 0:95 -133.940 54.993 74.495
DMA, � = 0:99; � = 0:95 -163.430 54.974 75.781
DMS, � = 0:99; � = 0:95 -160.610 55.288 76.619
DMA, � = 0:95; � = 0:99 -189.360 70.320 85.178
DMS, � = 0:95; � = 0:99 -172.060 65.516 81.878

h = 12
DMA, � = � = 0:95 -170.730 65.627 84.929
DMS, � = � = 0:95 -158.820 70.852 86.663
DMA, � = 0:99; � = 0:95 -195.010 95.909 96.682
DMS, � = 0:99; � = 0:95 -196.180 102.770 100.560
DMA, � = 0:95; � = 0:99 -252.640 141.700 118.790
DMS, � = 0:95; � = 0:99 -237.050 144.090 119.210
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Data Appendix
The following is the list of variables from the Bank of England�s monthly forecasting suite. These

are the variables for which complete data exists since 1990M1. The data runs from 1990M1 through
2008M11. The variables are listed in the blocks used to construct the factors. The acronym for each
variable is the same as that used by the Bank of England. All variables are transformed to stationarity
and the necessary transformation for each variable is also listed.
International Block
EAESINPRG: Europe (EA) industrial production, VOLA (source: DST). Transformation: percentage

change.
EMESPISDH: Europe (EA) industrial production of durable consumer goods, WDA (source: DST).

Transformation: di¤erence.
EMESPISNH: Europe (EA) industrial production of non-durable consumer goods, WDA (source:

DST). Transformation: percentage change.
EMOCIPEOG: Europe (EM) industrial production: manufacturing (source: DST). Transformation:

percentage change.
EMOCIPIGG: Europe (EM) industrial production: investment goods (source: DST). Transformation:

percentage change.
EMOCIPING: Europe (EM) industrial production: intermediate goods (source: DST). Transforma-

tion: percentage change.
EAESPISDG: Euro area (EUR13): Industrial production - Durable consumer goods, Index (2000=100),

SA. (source: DST). Transformation: percentage change.
EAESPISNG: Euro area (EUR13): Industrial production - Non-durable consumer goods, Index

(2000=100), SA. (source: DST). Transformation: percentage change.
USIP336VG: US industrial production - automobile and light duty motor vehicle, VOLA (source:

DST). Transformation: percentage change.
USIPMAUPG: US industrial production - automotive products (consumer goods), VOLA (source:

DST). Transformation: percentage change.
USIPMDUCG: US industrial production - durable consumer goods, VOLA (source: DST). Transfor-

mation: percentage change.
USIPMNOCG: US industrial production - non-durable consumer goods, VOLA (source: DST). Trans-

formation: percentage change.
USOCIPMNG: US industrial production - manufacturing, VOLA (source: DST). Transformation:

percentage change.
USUMCONSH: US consumer sentiment, volume index, not seasonally adjusted (source: DST). Trans-

formation: percentage change.
USEMPNAGE: US Employed - nonfarm industries, total (payroll survey), VOLA (source: DST).

Transformation: percentage change.
USESUNEMO: US unemployment rate, VOLA (source: DST). Transformation: di¤erence.
USUNEMPP: US unemployed, total (16 years and over), VOLA (source: DST). Transformation:

percentage change.
USCPF: US CPI - all urban sample, all items price index, not seasonally adjusted (source: DST).

Transformation: percentage change.
Output Block
CBIEXP: CBI monthly trends enquiry: Excluding seasonal variations, do you consider that in volume

terms, your present export order book is above normal? (source: CBI). Transformation: di¤erence.
CBIFG: CBI monthly trends enquiry: Adequacy of stocks of �nished goods (source: CBI). Transfor-

mation: di¤erence.
CBIORD: CBI monthly trends enquiry: Excluding seasonal variations, do you consider that in volume

terms, your present total order book is above normal? (source: CBI). Transformation: di¤erence.
CBIOUT: CBI monthly trends enquiry: What, excluding seasonal variations, is the expected trend

over the next 4 months with regards to your volume of output? (source: CBI). Transformation: di¤erence.
CKYW: IOP: Industry C,D,E: All production industries: CVMSA NAYear=100 (source: ONS). Trans-

formation: percentage change.
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CKYX: IOP: Industry C: Mining & quarrying: CVMSA NAYear=100 (source: ONS). Transformation:
percentage change.
CKYY: IOP: Industry D: Manufacturing: CVMSA NAYear=100 (source: ONS). Transformation:

percentage change.
CKYZ: IOP: Industry E: Electricity, gas and water supply: CVMSA NAYear=100 (source: ONS).

Transformation: percentage change.
CKZA: IOP: Industry DA: Manuf of food, drink & tobacco: CVMSA NAYear=100 (source: ONS).

Transformation: percentage change.
CKZB: IOP: Industry DB: Manuf of textile & textile products: CVMSA NAYear=100 (source: ONS).

Transformation: percentage change.
CKZC: IOP: Industry DC: Manuf of leather & leather products: CVMSA NAYear=100 (source: ONS).

Transformation: percentage change.
CKZD: IOP: Industry DD: Manuf of wood & wood products: CVMSA NAYear=100 (source: ONS).

Transformation: percentage change.
CKZE: IOP: Industry DE: Pulp/paper/printing/publishing industries: CVMSA NAYear=100 (source:

ONS). Transformation: percentage change.
CKZF: IOP: Industry DF: Manuf coke/petroleum prod/nuclear fuels: CVMSA NAYear=100 (source:

ONS). Transformation: percentage change.
CKZG: IOP: Industry DG: Manuf of chemicals & man-made �bres: CVMSA NAYear=100 (source:

ONS). Transformation: percentage change.
CKZH: IOP: Industry DH: Manuf of rubber & plastic products: CVMSA NAYear=100 (source: ONS).

Transformation: percentage change.
CKZI: IOP: Industry DI: Manuf of non-metallic mineral products: CVMSA NAYear=100 (source:

ONS). Transformation: percentage change.
CKZJ: IOP: Industry DJ: Manuf of basic metals & fabricated prod: CVMSA NAYear=100 (source:

ONS). Transformation: percentage change.
CKZK: IOP: Industry DK: Manuf of machinery & equipment: CVMSA NAYear=100 (source: ONS).

Transformation: percentage change.
CKZL: IOP: Industry DL: Manuf of electrical & optical equipment: CVMSA NAYear=100 (source:

ONS). Transformation: percentage change.
CKZM: IOP: Industry DM: Manuf of transport equipmnt: CVMSA NAYear=100 (source: ONS).

Transformation: percentage change.
Price Block
CBIPR: CBI monthly trends enquiry: What, excluding seasonal variations, is the expected trend over

the next 4 months with regards to average price for domestic orders? (source: CBI). Transformation:
di¤erence.
D7G7: CPI INDEX 00: ALL ITEMS- estimated pre-97 2005=100 (source: ONS). Transformation:

percentage change (annual percentage change used for forecasting this variable).
D7G8: CPI INDEX 01: FOOD AND NON-ALCOHOLIC BEVERAGES 2005=100 (source: ONS).

Transformation: percentage change.
D7G9: CPI INDEX 02: ALCOHOLIC BEVERAGES,TOBACCO & NARCOTICS- estimated pre-97

2005=100 (source: ONS). Transformation: percentage change.
D7GA: CPI INDEX 03: CLOTHING AND FOOTWEAR- estimated pre-97 2005=100 (source: ONS).

Transformation: percentage change.
D7GB: CPI INDEX 04: HOUSING, WATER AND FUELS- estimated pre-97 2005=100 (source:

ONS). Transformation: percentage change.
D7GC: CPI INDEX 05: FURN, HH EQUIP & ROUTINE REPAIR OF HOUSE- est. pre-97 2005=100

(source: ONS). Transformation: percentage change.
D7GD: CPI INDEX 06: HEALTH- estimated pre-97 2005=100 (source: ONS). Transformation: per-

centage change.
D7GE: CPI INDEX 07: TRANSPORT- estimated pre-97 2005=100 (source: ONS). Transformation:

percentage change.
D7GF: CPI INDEX 08: COMMUNICATION- estimated pre-97 2005=100 (source: ONS). Transfor-

mation: percentage change.
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D7GG: CPI INDEX 09: RECREATION & CULTURE- estimated pre-97 2005=100 (source: ONS).
Transformation: percentage change.
D7GH: CPI INDEX 10: EDUCATION- estimated pre-97 2005=100 (source: ONS). Transformation:

percentage change.
D7GI: CPI INDEX 11: HOTELS, CAFES AND RESTAURANTS- estimated pre-97 2005=100 (source:

ONS). Transformation: percentage change.
D7GJ: CPI INDEX 12: MISCELLANEOUS GOODS AND SERVICES- estimated pre-97 2005=100

(source: ONS). Transformation: percentage change.
PLLA: PPI: 6292990000: NSI M & F purchased by Man: Excl FBPT Excl CCL NSA (source: ONS).

Transformation: second log di¤erence.
PLLU: PPI: 7209200000: Output of manufactured products (source: ONS). Transformation: second

log di¤erence.
PLLW: PPI: 7209299890: Prod of man ind excl.f,b, p & t SA (source: ONS). Transformation: second

log di¤erence.
PVNQ: PPI: 7209200890: NSO: All manufacturing (excluding duty), SA (source: ONS). Transforma-

tion: second log di¤erence.
OILBRNI_P: Price of Brent Crude - 1 month fwd� fob US$/BBL (source: DST). Transformation:

percentage change.
OILBRNP_P: Price of Brent Crude - physical delivery, fob US$/BBL (source: DST). Transformation:

percentage change.
Demand Block
MREVQ1: CBI distributive trades reported motor traders sales (source: CBI). Transformation: dif-

ference.
MREVQ2: CBI distributive trades reported motor traders orders (source: CBI). Transformation:

di¤erence.
MREVQ3: CBI distributive trades reported motor traders sales for time of year (source: CBI). Trans-

formation: di¤erence.
MREVQ4: CBI distributive trades reported motor traders stocks (source: CBI). Transformation:

di¤erence.
RETREQ1: CBI distributive trades reported retailing sales (source: CBI). Transformation: di¤erence.
RETREQ2: CBI distributive trades reported retailing orders (source: CBI). Transformation: di¤er-

ence.
RETREQ3: CBI distributive trades reported retailing sales for time of year (source: CBI). Transfor-

mation: di¤erence.
RETREQ4: CBI distributive trades reported retailing stocks (source: CBI). Transformation: di¤er-

ence.
WHREQ1: CBI distributive trades reported wholesaling sales (source: CBI). Transformation: di¤er-

ence.
WHREQ2: CBI distributive trades reported wholesaling orders (source: CBI). Transformation: dif-

ference.
WHREQ3: CBI distributive trades reported wholesaling sales for time of year (source: CBI). Trans-

formation: di¤erence.
WHREQ4: CBI distributive trades reported wholesaling stocks (source: CBI). Transformation: dif-

ference.
GFKBALSA: GFK consumer con�dence aggregate balance. Transformation: di¤erence.
GFKQ1: GFK consumer con�dence: How does the �nancial situation of your household compare to

what it was 12 months ago? Transformation: di¤erence.
GFKQ2: GFK consumer con�dence: How do you think the �nancial position of your household will

change over the next 12 months? Transformation: di¤erence.
GFKQ3: GFK consumer con�dence: How do you think the general economic situation of this country

has changed over the last 12 months? Transformation: di¤erence.
GFKQ4: GFK consumer con�dence: How do you think the general economic situation of this country

will develop over the next 12 months? Transformation: di¤erence.
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GFKQ7: GFK consumer con�dence: How do you think the level of unemployment will change over
the next 12 months? Transformation: di¤erence.
GFKQ8: GFK consumer con�dence: Do you think that there is an advantage for people to make major

purchases at this time? Transformation: di¤erence.
GFKQ9: GFK consumer con�dence: Over the next 12 months how do you think the amount of

money you will spend on major purchases will compare with what you spent over the last 12 months?
Transformation: di¤erence.
EAPS: Retail sales index (RSI):Volume seasonally adjusted: All Retailers: All Business Index (source:

ONS). Transformation: percentage change.
EAPT: RSI:Predominantly food stores (vol sa):All Business Index (source: ONS). Transformation:

percentage change.
EAPU: RSI:Non-specialised stores (vol sa):All Business Index (source: ONS). Transformation: per-

centage change.
EAPW: RSI:Other non-food stores (vol sa):All Business Index (source: ONS). Transformation: per-

centage change.
EAPX: RSI:textiles:clothing:footwear (vol sa):All Business Index (source: ONS). Transformation: per-

centage change.
EAPY: RSI:Household goods stores (vol sa):All Business Index (source: ONS). Transformation: per-

centage change.
EAPZ: RSI:Non-store retailing & repair (vol sa):All Business Index (source: ONS). Transformation:

percentage change.
EAQV: RSI:Value seasonally Adjusted:All Retailers:All Business Index (source: ONS). Transforma-

tion: percentage change.
EAQW: RSI:Predominantly food stores (val sa):All Business Index (source: ONS). Transformation:

percentage change.
GMAZ: OS visits to UK :Earnings:#M-(Cur.Price-SA) (source: ONS). Transformation: percentage

change.
GMBB: UK visits abroad:Expenditure abroad:#M-(Cur.Price-SA) (source: ONS). Transformation:

percentage change.
BQKO: BOP:IM:CVM:SA:Total Trade in Goods (source: ONS). Transformation: percentage change.
BQKQ: BOP:EX:CVM:SA:Total Trade in Goods (source: ONS). Transformation: percentage change.
ELAR: BOP:IM:price index:NSA:Finished manufactures: SITC 7+8 (source: ONS). Transformation:

percentage change.
Financial Block
FTALLSH_DY: FTSE All share dividend yield (source: DST). Transformation: percentage change.
FTALLSH_PI: FTSE All share price index (source: DST). Transformation: percentage change.
FTSE100_PI: FTSE 100 price index (source: DST). Transformation: percentage change.
A_JYS: Exchange rate: Japanese Yen/£ , monthly average (source: FST). Transformation: percentage

change.
A_SFS: Exchange rate: Swiss franc/£ , monthly average (source: FST). Transformation: di¤erence.
A_USS: Exchange rate: US$/£ , monthly average (source: FST). Transformation: percentage change.
SERI: Exchange rate: Euro/£ , monthly average, prior to Euro, use DM with conversion rate 1.9583

(source: FST). Transformation: di¤erence.
A_AMIJ: 3 month £ inter-bank rate (mean LIBID/LIBOR), 10.30AM, monthly average (source:

FST). Transformation: di¤erence.
A_BEDR: Bank of England repo rate, monthly average (source: FST). Transformation: di¤erence.
A_VOMA: Overnight £ inter-bank rate (mean LIBID/LIBOR), 8:30 AM, monthly average (source:

FST). Transformation: di¤erence.
A_VSMA: 6 month £ inter-bank rate (mean LIBID/LIBOR), 8:30 AM, monthly average (source:

FST). Transformation: di¤erence.
AJNB: Treasury bills: average discount rate (source: ONS). Transformation: di¤erence.
VRPSPOTI10Y: 10 year VRP (variable roughness penaly model) spot rate (in�ation), (source: BoE).

Transformation: di¤erence.
VRPSPOTI5Y: 5 year VRP spot rate (in�ation), (source: BoE). Transformation: di¤erence.
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VRPSPOTN5Y: 5 year VRP spot rate (nominal), (source: BoE).Transformation: di¤erence.
VRPSPOTR10: 10 year VRP spot rate (real). Transformation: di¤erence.
VRPSPOTR5Y: 5 year VRP spot rate (real). Transformation: di¤erence.
Housing Block
HFAXPA: Halifax house price index, all houses (all buyers), 1983 = 100, SA (source: HAC). Trans-

formation: percentage change.
RICSPR: RICS housing market survey, prices, England and Wales, net balance, SA (source: HAC).

Transformation: di¤erence.
RICSSASTK: Ratio of RICS sales series to RICS stock series (source: HAC). Transformation: di¤er-

ence.
Money Block
AUZJ_AUYN: Amounts outstanding of monetary �nancial institutions� sterling M4 liabilities to

private sector, SA (source: MST).
AVAG: Monthly average amount outstanding of total sterling notes and coin in circulation outside

the Bank of England (in sterling millions), SA (source: MST). Transformation: percentage change.
VQJL: Monthly amounts outstanding of UK resident banks�(inc. Central Bank) sterling net lending

to private sector (in sterling millions), SA (source: MST). Transformation: percentage change.
VQJM: Monthly amounts outstanding of monetary �nancial institutions�sterling net lending to private

sector (in sterling millions), SA (source: MST). Transformation: percentage change.
VQXK: Money Stock: Retail Deposits and Cash in M4, SA (source: MST). Transformation: percentage

change.
VQXL: Monthly amounts outstanding of UK resident banks� (inc. Central Bank) sterling retail

deposits from private sector (in sterling millions), SA (source: MST). Transformation: percentage change.
VQZA: Money Stock: Retail Deposits and Cash in M4, NSA (source: MST). Transformation: per-

centage change.
Labour Block
BCJD: Total Claimant count SA (UK) - thousands (source: ONS). Transformation: di¤erence.
BCJE: Claimant count rate - all - SA (UK) % (source: ONS). Transformation: di¤erence.
LOKA: UK Employee jobs (SA): DA (15-16) Food products, beverages & tobacco (source: ONS).

Transformation: percentage change.
LOKB: UK Employee jobs (SA): DB/DC (17-19) Manu. of clothing, textiles, leather (source: ONS).

Transformation: percentage change.
LOKC: UK Employee jobs (SA): DD (20) Wood & wood products (source: ONS). Transformation:

percentage change.
LOKD: UK Employee jobs (SA): DE (21-22) Paper, pulp, publishing & recording media (source:

ONS). Transformation: percentage change.
LOKE: UK Employee jobs (SA): DG (24) Chemicals, chemical products & man-made �bres (source:

ONS). Transformation: percentage change.
LOKF: UK Employee jobs (SA): DH (25) Rubber & plastic products (LMT B.12) (source: ONS).

Transformation: percentage change.
LOKG: UK Employee jobs (SA): DI/DJ (26-28) Non-metallic mineral products, metals (source: ONS).

Transformation: percentage change.
LOKH: UK Employee jobs (SA): DK (29) Machinery & eqpt. (LMT B.12) (source: ONS). Transfor-

mation: percentage change.
LOKI: UK Employee jobs (SA): DL (30-33) Electrical & optical eqpt. (LMT B.12) (source: ONS).

Transformation: percentage change.
LOKJ: UK Employee jobs (SA): DM (34-35) Transport equipment (LMT B.12) (source: ONS). Trans-

formation: percentage change.
LOKK: UK Employee jobs (SA): DF,DN (23,36-37) Coke, nuclear fuel & other manu. (source: ONS).

Transformation: percentage change.
MGRZ: LFS: In employment: UK: All: Aged 16+: 000s:SA: Annual = Spring qtr (Mar to May)

(source: ONS). Transformation: percentage change.
MGSC: LFS: Unemployed: UK: All: Aged 16+: 000s: SA: Annual = Spring qtr (Mar-May) (source:

ONS). Transformation: percentage change.
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YBUS: LFS: Total actual weekly hours worked (millions): UK: All: SA (source: ONS). Transforma-
tion: percentage change.
YEJF: Employee jobs: All jobs: Production Inds. (C-E): (000s): (SA): UK (source: ONS). Transfor-

mation: percentage change.
LNKY: AEI (including bonuses), private sector (source: ONS). Transformation: percentage change.
LNMQ: AEI (including bonuses), whole economy (source: ONS). Transformation: percentage change.
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