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Abstract
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The overall benefits of FDI for developing country econoraieswell doc-

umented. Given the appropriate host-country policies arimhsic level of
development, a preponderance of studies shows that FDdergytechnol-
ogy spillovers, assists human capital formation, contiésuto international
trade integration, helps create a more competitive busirewsironment and
enhances enterprise development. All of these contributegher economic
growth, which is the most potent tool for alleviating poyeirt developing
countries(OECD, 2002, p.5).

It has been progressively acknowledged that the theorgiowth gains associated
with capital market liberalisation have often failed to ev&lise, especially in develop-
ing countries (Prasad et al., 2003). Nevertheless, as theeajpote makes clear, much
faith has remained in the ability of Foreign Direct Investm@DI) flows to foster pro-
ductivity! growth, thanks to their alleged contribution to the inteioraal diffusion of
technology. This issue has been hotly debated empiric@lg positive results of early
studies were often dismissed on misspecification groundsk@ic and Levine, 2005;
Wooster and Diebel, 2010). Endogeneity was particularlisane. A confounding vari-
able may have been omitted or the higher income associaté&dhigher productivity
could have been the cause of larger FDI flows, rather thandhserjuence. Researchers
turned to instrumental variables (IV) approaches to additesse concerns, and the most
recent studies (Kose et al., 2009; Vua and Noyb, 2009; Ken2&i0) conclude that FDI
does indeed foster productivity growth in recipient coigsty even after controlling for

several forms of endogeneity.

Given the actual state of the empirical literature, it cooédinferred that the positive

LIn this paper, when we mention productivity, we refer to ltédator productivity, not labour productiv-
ity.
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effects of FDI on productivity are no longer controversidhis paper argues that such
a conclusion is premature as recent papers, despite theasiog sophistication of their
econometric techniques, have neglected a key assumptaarlyimg their IV estimators:
the absence of outliers. If this assumption is not satiséedn one outlier may cause an
IV estimator to be heavily biased. In the jargon of the stiagdliterature, the classical
IV estimator is said to be not a robust estimator. Unfortalyabutliers are likely to be
present in FDI data. For instance, investments in the otbseway correspond to a large
share of GDP, or a small country may be a large recipient oftRBrks to generous tax
policies, leading to “roundtripping” and “trans-shippirfeDl.? It is also well-known that
productivity measures are frequently distorted by theges of natural resources; Hall
and Jones (1999) report that in the absence of any correcibrich Oman and Saudi
Arabia would dominate their productivity ranking. Eventigh it must be acknowledged
that some studies report having paid attention to outliéns, unlikely that they have
successfully dealt with this issdeThey used outlier diagnostics based on least-squares
residuals. Given that the least-squares estimator isragtygenon-robust to outliers, these
diagnostics share the same fragility and very often faildtedt atypical observations. In
addition, their approach did not take into account the comtbiinfluence of outliers in

the first and second stages of their IV estimations.

2Roundtripping refers to the situation where different tneents of foreign and domestic investors en-
courage the latter to channel their funds into special paggmtities (SPEs) abroad in order to subsequently
repatriate them in the form of incentive-eligible FDI. Wittans-shipping, funds channeled into SPEs in
offshore financial centres are redirected to other cows)tieading to strong divergences between the source
country of the FDI and the ultimate beneficiary owner.

3For instance Kose et al. (2009) report, p.5Vge first eliminated all observations with financial open-
ness values that were more than two standard deviationsthein respective full sample means. [...] We
also used the method proposed by Hadi (1994) for detectitifemuin multivariate regressions. Again,
eliminating such outliers made little difference to the kegults’

2



We remedy to this omission of the literature by refining a trsh (to outliers) IV
estimator (a RIV estimator) initially proposed by Coherie and Zamar (2006), in order
to estimate the ‘robust’ impact of FDI on productivity in anghof 106 countries over the
1970-2005 period. We improve on Cohen-Freue and Zamar J208&imator in three
different ways. First, we use a weighting scheme that makesstimator more efficient
and allows the computations of the usual identification avetidentifying restrictions
tests. Second, we show how the asymptotic variance of tlséimator can be made
robust to heteroskedasticity and asymmetry. Finally, waaithis new estimator of the
asymptotic variance to implement a generalised Hausmafotabe presence of outliers.

In our empirical application, we find that controlling foetlkexistence of outliers make
a profound difference to the results. Whereas an IV estinmtggests that a larger FDI
stock to GDP ratio increases productivity, the exact ogpainclusion is reached when
employing the RIV estimator. A graphical tool allows us tentify the outliers which
are responsible for this divergence in parameter estimdtke most outlying observa-
tions correspond to a war-stricken resource-rich courtityefia) and a tax haven (Lux-
embourg). Finally, we investigate whether a more positimpact can be detected in
countries which are likely to have been better placed to b foreign technology
spillovers. Our RIV estimates support this hypothesis engéinse that the impact of FDI
on productivity becomes statistically insignificant in otiies with favourable attributes
such a large stock of human capital or a well-developed fiahegstem. In those coun-

tries, the negative and positive productivity spilloveosgibly balance out.

The remainder of the paper is organised as follows: sectimeviews the classical
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IV estimator, presents the RIV estimator and describes eneglised test for outliers.
Section 2 demonstrates the good behaviour and propertid® &1V estimator and the
test for outliers via Monte-Carlo simulations. In sectiow8 describe the data used in
our empirical analysis and motivate our econometric apgrogection 4 presents and

interprets our empirical results and section 5 concludes.

1 Instrumental variablesestimation

1.1 Classical instrumental variables estimation
1.1.1 Classical instrumental variables estimator

The objective of linear regression analysis is to study ha&@endent variable is linearly

related to a set of regressors. The linear regression medelen by:

yi = X0+ & (1)

wherey; is the scalar dependent variable aads the (p x 1) vector of covariates
observed fori = 1,...n. Vectors and matrices will be denoted by boldface througghou
Vector 6 of size (p x 1) contains the unknown regression parameters and needs to be
estimated. On the basis of the estimated paranieiis then possible to fit the dependent
variable byj; = x', and estimate the residualgf) = y; — g; fori = 1 < i < n.
Although # can be estimated in several ways, the common intuition isytaot get as
close as possible to the true value of the parameters by iregltiee total magnitude of
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the residuals, as measured by an aggregate prediction émrtre case of the ordinary
least squares (LS) method, this aggregate prediction isrd&fined as the sum of squared

residuals. The vector of parameters estimated by LS is then

- ,
Os = argmin Y v} (0) (2)

=1
with r;(0) = y; — 0y — 12y — ... — b1z fOr 1 < i < n. Calling X the (n x p) matrix
containing the values for the regressors (constant included) andhe (n x 1) vector
containing the value of the dependent variable for all tlividuals, the solution to this

minimisation leads to the well-known formula

Ors = (X'X) ™' X'y
2 =~

n¥xx nXxy

3)

which is simply the product of thep(x p) covariance matrix of the explanatory vari-
ablesXxx and the f x 1) vector of the covariances of the explanatory variablesthad
dependent variablEx, (then simplify).

The unbiasedness and consistency of the LS estimates lbruiggpend on the ab-
sence of correlation betweexl ande. When this assumption is violated, instrumental
variable estimators are generally used. The logic undeglthis approach is to find some
variables, known as instruments, which are strongly cateel with the troublesome ex-
planatory variables, known as endogenous variables, dependent of the error term.
This is equivalent to estimating the relationship betwdenresponse variable and the

covariates by using only the part of the variability of thalegenous covariates that is
5



uncorrelated with the error term.

More precisely, let's defin& the (» x m) matrix (wherem > p) containing the
instruments. The instrumental variable estimator (gdiyaralled two stages least squares
whenm > p) can be conceptualised as a two stage estimator. In the tige,seach
endogenous variable is regressed on the instruments ahe eariables ifX that are not
correlated with the error term. The predicted value for eanfable is then fitted. In this
way, each variable is purged of the correlation with therdeon. Exogenous explanatory
variables are used as their own instruments. Technicadlglspg, the first stage consists
in fitting

1

X =27(2'2)" Z'X (4)

In the second stage, the standard LS formula (3) is used atrix is replaced by
N A\ 1
Oy — (th) X'y (5)
By replacing (4) in (5) we have that

1

Oy = (th (z'z)"' 27 (z'z) " ti)_l X'7(2'Z) " Zty (6)

that simplifies to

0 = (X'Z(Z'2)'2'X) ' X'Z(Z'Z) " Zty (7)



We finally have

Iy = (Bxz (B2z) ' Sa2x) Bxz (Szz) ' Sz, (8)

whereXY.xz is the covariance matrix of the original right-hand sideiatsles and the
instruments Xz is the covariance matrix of the instruments angl, is the vector of
covariances of the instruments with the dependent varidbteawback of the IV method

is that if outliers are present, all the estimated covaearare biased. Cohen-Freue and
Zamar (2006) therefore suggest to replace the classicatiemece matrices in (8) by some

robust counterparts that withstand the contaminationettmple by outliers.

1.1.2 Asymptotic variance

The asymptotic variance of the classical IV estimator (tigtstands heteroskedasticity)
is the standard Huber-White sandwich estimator baseX oather tharX, i.e.

Vi = (th() T Rleel X! (th(>_1. Note however that the residuals used to estimate
the variance are; = y; — x§§IV and notr; = y; — xge}v. The formula of the estimated

asymptotic variance is therefore

Vo = (th)‘l KX (X'X) - ()



1.2 Robust instrumental variables estimation
1.2.1 Robust instrumental variables estimator

When outliers are present, the covariances in equationg@) to be robust to outliers.
We follow Cohen-Freue and Zamar (2006) by using what areddle S-estimators of

scatter.

An useful preliminary introduction to these estimatorshe nhotion of generalised
variance. This measure, originally introduced by Wilks32) is a one-dimensional as-
sessment of multidimensional spread. Without loss of gditgrwe explain this concept
calling on a2 x 2 covariance matrix. The generalisation to higher dimerssisistraight-
forward.

Let’'s define a covariance matrix

Y= (10)

Ox1x9 g
whereo} , o2, andoy,«, are respectively the variance of variablg, the variance of

variablex, and the covariance between the two. The generalized variardefined as

the determinant of: i.e. 02 02 — g2

X1 X2 X1X2"

This expression is composed of two elements:
the product ofo; ando and the squared covarianeg . . The first term ¢Z o7
represents the raw bi-dimensional spread of the obsengtitowever, ifx; andx, are

not independent, some of the variancexinis already accounted for by the variance in

x;. When we look at the formula of the determinant, we see thatrddundancy is dealt
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through the substraction of the second terf (). Hence, the generalised variance is
a unidimensional assessment of the bi-dimensional spneeel the covariation has been
accounted for. Having defined the generalised variance, fioiv easy to present the
underlying principle of an S-estimator of scatter. For thkesof clarity, we start with the

univariate case before introducing the multivariate case.

Consider the minimal linear modgl = 1+-¢;. the objective of parameter estimation is
to find the estimatg such as the predicted valugsre as close as possible to the observed
valuesy;. The LS objective is to minimize the sum of squared residyals, (y; — 1), or
equivalently minimise the variance of the residuals";" | (y; — p)* = 0. If we rewrite

the last expression

n

1 i — it
EZ( p ):1 (11)

we can say that, our measure of location, is the estimate that minimisegtbasure of

dispersiorns under the constraint that equality (11) holds. The valug which satisfies
this condition is the sample mean.

A drawback is that the squared distance criterion is vergifiga to outliers as it
attributes a huge importance to large (absolute valueg. dfhus, to increase robustness,
another objective functiop, can be chosen, which is less sensitive to extreme values of
y. * However, in that case, the estimatednd;: will no longer be the standard deviation
and the sample mean when data are Gaussian. A solution isysionmodify equality

(11) such that the problem is now to find the smallest robuslesef the residualg®

4Functionp(-) is even, non decreasing for positive values, less incrgdkan the square with a unique
minimum at zero.



satisfying

1 n ;— A

=Y (PR =6 (12)
n 1 o

whered = E[py(u)] with u ~ N(0,1). This modification guarantees that the estimated

&° is coherent with the standard deviation for Gaussian dataat in large samples.

The value ofu that minimizesy® is called an S-estimator of location. More formally, an

S-estimator of location is defined as:

,&S = arg n’hin 55(3/1 - /:Lu ce Yn — /:L) (13)

wheres® is the robust estimator of scale as defined in (12). If we amisinodel (1),
instead of the minimal model, the logic remains unchangeidla® S-estimator of regres-
sion becomes:

~

0% = arg n%in 6%(r1(0), ..., (0)) (14)

under the equality constraint

Iy =s (15)

The choice ofyy(+) is crucial to have good robustness properties and a highdizaus
efficiency. The Tukey Biweight function defined as
1— [1 - (2)2]3if u| < k
k, —
po(u) = (16)
1 if |ul >k

10



with first derivative

S (u?—k)if Jul <k
po(u) = (17)
0 if |ul >k

is a common choice. The LS and Tukey Biweight objective fiomst are plotted in figure

1.

[Figure 1 about here]

The tuning parameter is the number of robust dispersion estimate from the mean at
which p;, (the first derivative op,) becomes zero. To guarantee a resistance up to 50% of
outliers, tuning constant can be sefitd46. The Gaussian efficiency of such an estimator
is however rather low (approximately 28%), meaning thaBlestimator needs more than
three times as many observations as the LS estimator tovacthie same variance when
data are Gaussian. Increasing the value of the tuning aanstauld increase efficiency

but reduce the percentage of contamination the estimatowitastand.

In multivariate analysis, a similar logic can be applied amdS-estimator of loca-
tion and scatter can be estimated by finding the multivariate location parameter, that

minimises thelet(X) (i.e. a unidimensional assessment of multivariate sprealject

to:

S oy = )55 s — s)') = 0 (18)

11



wherep(-) is a loss function which is even, non decreasing for positalees and less

increasing than the square function. The tekm= \/(xi — ﬂs)ilgl(xi — fig)’ (called a
Robust Mahalanobis distance) is a unidimensional assessiitbe standardised distance
of each observation from the center of the multivariate dédad (i.e. the multivariate

equivalent off"j}‘sﬂ). It is distributed as\/XT% for Gaussian data. As for the univariate

case, thep,(-) function considered here is the Tukey Biweight defined in).(1® the
multivariate case, as proposed by Campbell et al. (1998)y#tue of tuning parameter
k is chosen by specifying a cut-off constant as the numbermisbdispersion estimate
from the mean on the univariate scale at whjighbecomes zero (i.e1.546) and then
converting it to a value on the chi-squared scale:oby using the Wilson and Hilferty
(1931)’s transformation. The constaris taken as the expected valueifd;) assuming
a multivariate normal distribution (see Campbell et al, 899

The solution to this problem leads to a robust counterpath@fcovariance matrix.
It is then easy to robustly estimadexz, 37z and Xz, and replace these estimates in

equation (8). The robust instrumental variable estimadortberefore be written as:
A -1 -1 -1
QIS%IV = (Eiq(z (Egz) E%X) 2chz (Egz) Egy (19)

An alternative estimator that would allow a substantiahgaiefficiency is:

Oy = (Z¥ (Blz) " Dlix) =¥ (5) 7 B, (20)

wherelV stands for weights. The idea here is to estimate robust em@>xz, and
12



calculate robust Mahalanobis distances. Relying on tleegkers are identified by look-
ing at observations that haveddarger than, /x7, ;4. Observations that are associated
with d; larger than the cut-off point are downweighted and the @atéeweighted) co-
variance matrix is estimated. The weighting we adopt hestnigply awarding a weight

one for observations associated t@ smaller than a critical value and zero otherwise.

The advantage of this last estimator is that standard cemtification, underidenti-
fication and weak instruments tests can easily be obtaimee $his weighting scheme
amounts to running a standard IV estimation on a sample freaitters. The asymp-
totic variance of the estimator is also readily availablertikrermore, a substantial gain
in efficiency with respect to the standard instrumentalaldda estimator proposed by

Cohen-Freue and Zamar (2006) can be attamed.

As far as the estimator presented in (19) is concerned, weopeto improve on
Cohen-Freue and Zamar (2006), by calculating an asymptatiance that withstands
heteroskedasticity and asymmetry. This is achieved bytadpfhe estimator proposed
for the asymptotic variance of the S-estimator in Croux ef(2003) to the case of a
robust instrumental variable estimator. The main benetitisfapproach is that it allows
us, following Dehon et al. (2010), to implement a test to &héoutliers distort classical

instrumental variables estimations enough that robushoakstare warranted.

SUnfortunately, it is not possible to know beforehand thehedble efficiency. However, in our simula-
tions, the Gaussian efficiency is 97%.

13



1.2.2 Asymptotic variance

To calculate the asymptotic variance of #hg,, estimator, we rely on the same logic of
Croux et al. (2003). It can be shown that robust IV estimadoesa special case of Method

of Moments estimators fat = (6", o))" with moment matrixm (for observation)

t
1 (Yi—%;00\ 5 S
Po(F )% PoiXi

po(Y=52) — poi — 0

(e

wherepy; = pleo;), With eg; = Y_Txteo The first line ofm; corresponds to the
F.O.C. of the minimisation problem associated to the Syegttir while the second is
related to the equality constraint. Note that as in the @absasex; is used for the final
estimator and nok;. Obviously, equation (19) guarantees tikais robustly estimated.
The estimated residuals = y; — xféo are fitted, as in the classical case, relyingsgn

rather than orx’.

Following Hansen (1982), Croux et al. (2003) show thaas a limiting normal dis-
tribution given by

VN —0) — N,(0,V)

where, defining the matrix of the derivatives; the matrix of the derivatives ah;(0)

with respecttd (i.e. Gs= F [a‘ggf,e)} ) andQs= E[m;(6)m(#)], the asymptotic variance

Vis
V = GLO'GY!

14



which, for the exactly identified case, is equivalent to

V =G5'Qs(Gy) ™! (21)

. (Pf)z’)z )A(,)A(f PoiPoiXi
SinceQdg = K

ﬂozﬂ/oz'f(? (ﬂOz‘)2 —0°

andGg' =

o[B(og &R —o[E(p%&D)] E(pfi%icon) [E(phicor)]

0 ol E(phyeon)] !

Defining B = o[E(p);x:X!)] "t andb = BE(p}Xic0:)[E(ppc0:)] " and calling on

(23) we have

Gg'=—
0 U[E(Pf)ifoz')]_l

And subsequently

Avar(6%) = BE((pfy)*%:%})B = bE(p;p0:%)B — BE(py;p0i%i)b’ + bE((p0i)* — 5%)b!

This asymptotic variance is robust to heteroskedasticity asymmetry. If we assume

homoskedasticity (i.ex; ande; are independent) and symmeiily= 0), the formula

15



boils down to

Avar(és) _ O.ZE ((p6z>2
(E(p6:))

N~
e
—~
>
£

>

~
S—

N—
|

—

We however discourage the use of this simplified formula acpce since in addition to

its being fragile to heteroskedasticity, it also lacks rsthess with respect to outliers.

1.2.3 Testing for outliers

As previously mentioned, one of the drawbacks of S-estimattheir low Gaussian
efficiency. To cope with this, Yohai (1987) introduced MMigsators that combine a
high resistance to outliers and a high efficiency. Thesenastirs are two step estimators

where the first step is a standard S-estimator as defined jra(itBthe second step is

GMM — arg mein i p<r2(9) ) (22)

: o
=1

where the measure of scale is fixed at the value estimatecel§-#stimatorz®. The
function p(-) (with first derivativei(-)) is the same as for the S-estimator, except that
the tuning parameter is set in such a way the Gaussian efficisrhigher. The prelim-
inary S-estimator guarantees a high breakdown point, aadh final MM-estimate a
high Gaussian efficiency. As illustrated by Croux et al. @0the MM-estimators are

exactly identified Generalized Method of Moments estime{@&MM) for 6 = (6, 0)"

16



with moment matrixm (for observation) is

YY), Uik,
mi(0) = | g2z [ =] ek
i —xt0
po(F—=) =0 poi — 0

where; = (g;), with g; = Y_Txte The last two lines correspond to the moment
matrix of the S-estimator described above while the firg tarresponds to the F.O.C. of

the minimisation problem shown in (22).

Following Hansen (1982), Croux et al. (2003) show thaas a limiting normal dis-
tribution given by

VN —0) — N,(0,V)

where, definingG,,, the matrix of the derivatives aifn,(#) with respect to theta

i.,eGyu=F [8’5171(,9)]) andQ,, = E[m;(0)ml(#)], the asymptotic varianc¥ is
V = (Gl Gang) ™

which, for the exactly identified case, is equivalent to

V= G’J_VJIMQMM(GfﬁwM)_1 (23)
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24 ot /o ot s
PiXX; @biPOixiXi VipoiXi

i = / 5ot 1 \2 5 ot / N
Sinceyy = B PoVi%iX; (00:)” XXy pipoiXi

Pt poipyRt (por)? —02

andG;/,, =
o[ B(Wi%xt)] 0 —o[B(W%&L)]| T E(vi%ie;) [E(phieos)]
- 0 o B(p%&0] T —o[E(phx&h)] " E(ph%icor) [E(phycor)]
0 0 o[E(phicoi)]

V= G]_V[lMQMM(GIJt\/[M)_l

Defining A = o[E(yj%:%))] " a = AE(VRie:) [E(ppic0i)] s B = o[E(pg%:%))]

)

andb = BE(pj.X:c0:)[F(ph;c0:)]~ and calling on (23) we have

0 0 olE(phco)]™

And subsequently

Avar(0MM) = AE(2%RXDA — aBE(;poik ) A — AE(;i%;poi)al + aE((py;)? — 6%)al

18



Avar(0°) = BE((p,)* &%) B — bE(py;p0i%)) B — BE(pfypoi%i )b’ + bE((poi)* — 6°)b’

Acov(BMM,0%) = AE(thipl %Xl ) B—aE(pl;poiki) B—AE(¢:%ipo;)b'+ak((pei)* —0°)b’

Having the asymptotic variance 8f, 6" and the covariance between the two, it is
now possible, following Dehon et al. (2010), to call on a tesicedure that balances
robustness against efficiency. The underlying idea is topawean estimator which is
very robust but highly inefficientdf) with an estimator that is potentially less robust
but more efficientq*). On the one hand, if the difference between the S estimate and
MM estimate is small, it would be preferable to use the MMraator given its higher
efficiency. On the other hand, if the difference between i éstimates becomes too
large, the gain in efficiency is more than balanced by a lossbhaostness, and it would be

better to use the more robust estimator.

The probably most appropriate testing procedure to reashatim is the generalised

Hausman test defined as

W= (0" — 0%)[Var(@"™) + Var(6%) — 2Cov(9"™,0%)]71 (6™ — 6°)"  (24)

Bearing in mind that this statistic is asymptotically distited as ay?, wherep is the
number of covariates, it is possible to set an upper boundealich the estimated

parameters can be considered as statistically differetatte differently, ifiV is larger

19



thanxi,(l_a) the difference betweef* andé* is too large, and the gain in efficiency

cannot compensate the loss in robustness.

In our case, the robust but not efficient estimator will be $hestimator defined in
(19). For its efficient but not robust counterpart, we relytba fact that LS is nothing
else than a special case of the MM-estimator wheoes to infinity, since ik — oo,
plu) = “72 Y(u) = u, ¥'(u) = 1 and MM boils down to LS. Hence, we will test for the
presence of outliers in the dataset by contrasting theiSatstr with the LS estimator of

the second stage of the IV estimator, as defined in (5), usi@gppropriate asymptotic

variance in (9).

2 Monte-Carlo simulations

2.1 Behaviour of the RIV estimator

We use a setup that is similar to that of Cohen-Freue and Zg086). We first generate
1000 observations for 5 random variables u, v, w, z) drawn from a multivariate normal

distribution with mean. = (0, 0,0, 0, 0) and covariance

10 0 050
0 03 02 0 0
Y= 0 02 03 0 0
05 0 0 1 O
0O 0 0 0 1

or equivalently, with correlation matrix

20



1 0 0 05 0
0 1067 0 0
P = 0 067 1 0 0
05 0 0 1 0
0 0 0 0 1

We then consider the following data generating process (DGR :

y =1+ 2x+z+ u. We assume that is measured with error and that only variable
X, that is generated aX = x + v, is observed. Given that the correlation coefficient
betweenu andv is about 0.7, we would obtain biased and inconsistent eginsi& we
simply regresse® on X andz, sinceX andu are not independent. We therefore have to
use the instrumental variable estimator, exploiting tlsrirmental variablev. The latter
satisfies the two conditions required for a variable to be@lgostrument: it is relevant,
as it is correlated at 0.5 witK, and it is independent of the error tem We reproduce
this setup 1000 times under different contamination séernarthe ‘mild’ scenarii, we
contaminate alternatively 5% of the observationspfv, z or y by the value 5. In the
‘heavy’ scenarii, we contaminate alternatively 10% of thea@rvations ok, w, z ory by

the value 10. Finally we consider a setup with no contamametts simulate the efficiency

of the RIV estimator relative to that of the classical |V gsdior.

[Tables 1-3 about here]

It can be seen in tables 1-2 that the classical IV estimateeng sensitive to the con-
tamination of the sample by outliers, even in the mild case.tl@@ other hand, the RIV

estimator is extremely stable, having a very low mean sguam®r whatever the scenario
21



tested. Interestingly, outliers in the instrument onlypsgly influence the results of the
classical IV estimator when heavy contamination is presarttitively, that is because
outliers in the instrument (in our simulation setup) wilvee generate extreme values in
the fitted value of the troublesome variabl€)( as would be the case for direct contam-
ination. Finally, table 3 shows that, in the absence of quoirtation, the classical and
robust IV estimators have very similar performances. Th&wxae of the RIV estimator

at the normal is only 3% larger than that of the classical [Nhestor.

2.2 Propertiesof the Hausman test for outliers

We now turn to the properties of the generalised Hausmarfaestitliers.

We first investigate the size of the test. We reproduce thepkab®00 times under the
null, i.e. we do not generate any outliers, and calculatgogreentage of rejection, with
a degree of confidence of 95%. The estimated size of the tds996, very close to the

nominal test size of 5%.

[Figure 2 about here]

We then simulate the “power” of the test under some specifcunistances. We
consider 4 contamination scenarii where 5%, 10%, 15% anddQBe observations iR,
w, z Or y successively become outliers. For varialkdesdx the outliers are sequentially
generated from a Normal distribution with unit variance aedtered in values ranging

from 0 to 3, with an increment of 0.1. For each of these comations we reproduce the
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sample 100 times and calculate the percentage of reje¢tmnariabley the outliers are
generated from a Normal distribution with unit variance aedtered in values ranging
from O to 5, while forw, the outliers are generated from a Normal distribution witiit
variance and centered in values ranging from 0 to 30. Axfandz, we reproduce the
sample 100 times and calculate the percentage of rejeciiba.simulation results will
give us an idea of the power of the test according to diffesetups.

Figure 2 suggests that the test is fairly powerful. Indeddemthe distance with re-
spect to the null increases (horizontal axis), the pergendérejection of the null (vertical
axis) increases rapidly for contaminatiorzink and, though slightly less so, in Further-
more this high rejection occurs faster when the percentbgerdaminated observations
increases. For variable, the effect of outliers on the rejection of the null is smalle
for the same reasons as given above; indirect contaminatithre second stage has less
impact on the estimation of the second stage than direcaounation of the variables

involved in the second stage.

3 The effects of FDI on productivity: empirical model

and data

Having developed the necessary tools to take into accournpal outliers in our vari-

ables, we investigate the impact of FDI on productivity.

We assume that outpif in country: at timet is produced according to a Cobb-

6Computer code and programs are available upon request &uthers.
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Douglas production function, using physical capifé] and effective human capital-
augmented laboud . The latter is related to schooling, suchds = e*%L,,, and

A'is a labor-augmenting measure of productivity.

Y = KiOZ(Az'tHit)l_a

Y;' Kz LHZ
E = Ait(?_t)lia LZ
Y; o « Ky
Ln(L—Zt) = Ln(Ay)+ 1 aLn( Y )+ ¢Su (25)

Following Hall and Jones (1999), we have rearranged theyatazh function so that the
capital-output ratio appears on the right-hand side of #gua Expressing output per
worker in this way ensures that all the long-run effects ofirarease in education or

productivity are attributed to these variables.

In line with previous research on the determinants of pradig (Hall and Jones,
1999; Rodrik et al., 2004; Kose et al., 2009), the equilitrivalue of productivity is
expected to depend on institutional qualify\{ST’), the FDI stock to GDP ratiog%),

time-invariant country-specific factor€() and country-invariant time effect&})’:

FDI
GDPi

Ln(A;) = BINST + 3, +Ci+ T, + e (26)

whereg;; is a not serially correlated error term.

“In unreported regressions, we allowed for country-spetiifie trends. Results were qualitatively un-
changed.

24



Adjustment of the actual value of productivity to its egoiilum value is not instanta-
neous:

D ALn(Ay) - Ln(A)

Solving this first-order difference equationim(A;) and plugging equation 27 in 26 we
obtain a partial adjustment model, in which the current gatiproductivity depends on

its past value and the determinants of its (time-changiggjlierium value:

Ln(Ay) = e MLn(Ay_,) +0INST, + (1 =T +ey (27)

. FD
‘T GDP
wherer =t —t,0 = (1 —e)B, v = (1 —e )Py, andey; = (1 — e 7)C; + (1 —

—7)

€ Eit-

Using this expression for productivity in equation 25 we get

Y, . FDI a K; ar
uuﬂﬁzeAzmpm4y+MNSm+mGDPn+1_amunﬂ+¢&f+u—eA)ﬂ+at

}/;L (0% KZ —\T FDI —AT
Ln(L—;) — [1 — aLn( Y;t) + ¢Sy + e M Ln(Ay_1) + 0INST,] = TGDPay (1—e™)T; +<ii(28)

We are solely interested i, the coefficient on the FDI to GDP ratio. Hence, we con-
strain the coefficients in the brackets to values that arentonty used in the literaturé.

Following Gollin (2002) and Psacharopoulos and Patrin0942, we assume that, the

8Results are not qualitatively sensitive to changes in theegthat we have used.
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physical capital’s share in the production, is equa%toand that,¢ the return to one
extra year of education, is 10%. The estimates of BernardJands (1996) and Kose
et al. (2009) suggest that a reasonable estimate for the sfp@eoductivity convergence
is 4% per year. Given that we use a five-year period pandl{**® ~ (0.82. Finally,
we do not have a readily available estimate for the long-ffteceof institutional qual-
ity on productivity. Our approach is to report our resultgigsa range of values fqp;,
such as institutional quality typically explains betwedhdnhd 90% of the productivity
gap between the countries whose productivity values areeathe@ upper quartile and the

countries whose productivity values are below the lowerigjean 2005.

Data on income and labour force come from Heston et al. (20a%e capital stock
is calculated using the perpetual inventory metHoathile data on schooling come from
Barro and Lee (2010), and correspond to the average yeaabsthooling for the popu-
lation aged 15 and over. Our measure of FDI is the ratio of GredifrDI stock (liabilities)
to GDP, which come from Lane and Milesi-Ferretti (2007), efairly standard in the lit-
erature (see for instance Carkovic and Levine (2005) Prasald (2007)). We use stocks
in order to capture the cumulative effects of foreign presefBitzer and Goérg, 2009).
This financial measure cannot be expected to provide a pegiettre of foreign pres-

ence in a given country, but it is well correlated~ 0.70) with indicators of real foreign

%In unreported regressions, we tried to adjust the laboweféor unemployment. Results are qualita-
tively very similar to our main results.

0Capital is assumed to be accumulated according to the foigpaguation of motiord<;; = I;; + (1 —
0)K;:—1, where a depreciation rateof 6% is chosen. The initial capital stock is calculated om ltlasis
of the expression for the steady-state capital stock in thewemodel: Ky = % whereg is the average
geometric growth rate for the investment series betweefirtg/ear with available data and the tenth year
with available data. In order to minimise the impact of thassumptions on the initial capital stock, data
on estimated capital stocks are discarded as long as tweatg from he first year with available data have
not elapsed.
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activity such as the the total numbers of majority-owneeigm affiliates, as reported by
the UNCTAD on thdnvestment Mapvebsite!! The institutional quality measure comes
from Teorell et al. (2010) and corresponds to the mean vditieed CRG (International
Country risk Guide-PRS Group) variables “Corruption”, fiLand Order” and “Bureau-

cracy Quality”, scaled 0-1. Higher values indicate highealdy of government.

Our panel consists of data for 106 countries over the pertstD2005. Following
Caselli et al. (1996), we use a five-year period pameH( 5), such as the productivity
values are five years apart and the values/fSiS7T and % have been averaged over

non-overlapping five-year periods (1970-1974...2000420Botential endogeneity of the
% ratio warrants an IV approach. In line with recent panelditere, we use as inter-
nal instruments the lagged values of the troublesome Jaridiore specifically, given
the strong persistence of the FDI sertése instrument the level values of tl% ratio,
with its once- or twice-lagged differences. Lagged diffexes are valid instruments under
the assumptions that (1) there is no correlation betweeditfeences of these variables
and the country-specific effects and, (2) the idiosyncradid of the error term is not se-
rially correlated (Blundell and Bond, 1998). These hype#secan be tested through an
Arellano and Bond (1991) test of serial correlation of thieténced error term and a

Hansen (1982) test of over-identifying restrictions. Givis good properties in terms of

bias and coverage rate (Angrist and Jorn-Steffen, 2009jpetes on the results obtained

Hnt t p: // ww. i nvest nent map. or g/ i nvmap/ i ndex. aspx?pr g=1

2In a simple AR(1) model estimated by OLS, the coefficient anltgged FDI stock is slightly larger
than 0.80. Blundell and Bond (1998) show that lagged levedsnaeak instruments for subsequent first-
differences when the autoregressive coefficient is higheyBuggest using instead suitably lagged differ-
ences as instruments for the equations in levels. Indeechd8ll et al. (2001)’'s Monte-Carlo simulations
indicate that a ‘levels-GMM’ estimator performs well whéwmtseries are highly persistent.
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via a just-identified IV estimator, using the once-laggeftedénce of£2L as an instru-
ment for the latter. The test of overidentifying restricisas computed using once- and

twice-lagged differences gf2% as instruments.

4 Theeffectsof FDI on productivity: empirical results

Figure 3 reports the IV estimate of the short-run coefficient o% for a range of

a range of values fof;, the coefficient ol NST. FDI appears to have a positive and
statistically significant impact on productivity, whictesvthe value assumed fgr. For

v~ 0.15, B = (1—3747) ~ (.83, suggesting that a 10 percentage points rise in the FDI to
GDP ratio would increase productivity in the long-run by ab8%. This finding is in line
with the recent literature investigating the impact of inegional financial flows on pro-

ductivity. For instance, Kose et al. (2009) find in table 4ra@it paper that a 10 percentage

pointincrease in the ratio of FDI and equity liabilities t®8 would increase productivity

in the long-run by about2-355% « 10) « 100 ~ 9%. Such an effect is not dramatic but is
nevertheless equivalent to increasing average years 0bbog by 1 year. Figures 5to 7

suggest that the once-lagged differenc%ﬁ% is a strong and valid instrument.

In the absence of concerns relating to outliers, we wouldlcmie that openness to
FDI is likely to enhance productivity in the recipient coues. However, figure 4, which
reports the RIV estimate of, tells a very different stor{? If we assume that differences

in institutional quality explain less than 65% of differesan productivity, the impact of

BFigures 5 to 7 suggest that the once-lagged diﬁeren%% remains a strong and valid instrument,
despite the omission of outliers.
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FDI is negative and statistically insignificant. On the ethand, once this productivity
threshold is exceeded, the impact of FDI remains negativestsubstantially larger and
statistically significant. For 75% of the productivity gagp&ined, a 10 percentage points
rise in the FDI to GDP ratio would decrease productivity ia thng-run by about 37%.
A plausible explanation for this finding is that any positivBl-related effects are out-
weighted by a ‘market-stealing- effect’, in the sense thatdntry of foreign competitors
causes less-competitive domestic producers to cut priuict such an extent that they

experience an overall productivity decline (Aitken and itam, 1999).

[Figures 3-8 about here]

Figure 8 shows that our Hausman test always rejects the edbsdroutliers in the
sample. Identification of the outliers can be achieved bytipig robust Mahalanobis
distances against residuals of the second stage starethldisa robust estimate of their
standard deviatioi Outliers are usually classified as vertical outliers, ghodzontal
outliers (good leverage points) or bad outliers (bad leyenaoints). A vertical outlier
is an observation outlying in the vertical dimension onfythe context of our empirical
application, that means that the predicted value of theymrtdty is very different from
the actual value. Its presence mostly affects the valueeointercept parameter by shift-
ing the regression line upwards or downwards, even thougantalso affect the slope

estimates. A good outlier is an observation outlying in tbhezontal dimension only; the

4We exploit the residuals of the second stage, with the uyitigrlassumption that our methodology
guarantees that the estimates are robust to outliers inrttestage. As a corollary, it is important to note
that it would not enough to check for outliers in the secolagst as this would not guarantee robustness to
outliers in both stages.
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FDI to GDP ratio is very different from the rest of the obs¢imas. It has little effect
on the estimated coefficient since it lies in the continuityhe regression line. Finally, a
bad outlier is outlying both in the vertical and horizontahénsions; the predicted value
of the productivity is very different from the actual valaed the FDI to GDP ratio is
very different from the rest of the observations. The preseof this type of outliers in
the data is considered particularly harmful, as their remess from the rest of the data
strongly influences the slope estimates, given the attefmibed?SLS estimator to min-
imise both at the first and second stages the squared didiatween these observations
and the regression line. In figure 9, we facilitate the ideration of each type of outliers
by setting vertical and horizontal cut-off points. The 1t cut-off points are 2.25 and
-2.25. Assuming that the data are Gaussian, residuals areatp distributed, and values
above or below these cut-off points are strongly atypicateithey are 2.25 standard de-
viations away from the mean, with a probability of occurené 0.025. In line with our
downweighting scheme, the horizontal cut-off point js2 ;4. Vertical outliers are in

Section (S) 1, good outliers are in S3 and bad outliers ar@in S

[Figures 9-11 about here]

It is obvious that Liberia (LBR) and Luxembourg (LUX) are essively bad outliers.
That is not surprising given that their FDI stocks are 5 anti@2s greater than their GDP
respectively. Once the observations related to these twatdes are omitted (figure 10) a
large number of outliers remain, even though the bulk of thepear to be good outliers.

Figure 11 illustrates the influence of each kind of outligrréporting the estimate of
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and its associated confidence interval once each categoeyisved. As expected, the
omission of vertical and good outliers has little impact be LV estimates. On the other
hand, eliminating bad outliers shows how the classical fifretor can totally breakdown

in the presence of bad outliers and generates very misigaesults.

Studies investigating the impact of FDI on economic growsigfiently argue that the
existence and diffusion of positive productivity spilleseought to be conditional on a
country’s absorptive capacity, as measured by its levaladme per worker, human cap-
ital, trade openness, financial development or institatiomality (Carkovic and Levine,
2005). We investigate this possibility by looking at theusbeffect of FDI on productiv-
ity in samples of countries for which a given measure of gitsae capacity is above the
sample median in period 2000-2004. Our measures of incom&g&er, human capital
and institutional quality have already been defined. Trgaknoess corresponds to the
trade openness rati%;—m, as reported in Heston et al. (2009). Finally, financial tleve
opment is the value of credits by financial intermediarietheoprivate sector divided by

GDP; this variable can be found in the updated database ck(8tal., 2000).

Figures 12 to 16 suggest that absorptive capacity may indestiate the effects of
FDI on productivity. In comparison to our previous resulte never find a scenario
in which higher FDI would lead to a fall in productivity. Hower, we can also never
reject the null hypothesis that FDI has no impact on prodiigti These disappointing
findings may reflect a rough balance between the negative@sitive foreign spillovers

in countries well-endowed enough to profit from them.
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[Figures 12-16 about here]

5 Conclusion

The application of a robust instrumental variable (RIV) eggeh to investigate the im-
pact of foreign direct investment (FDI) on productivity ilaage panel of countries has
allowed us to demonstrate that outliers need to be takeousdyi We find that the positive
and statistically significant impact of FDI on productiveyggested by the classical IV
estimator is an artefact stemming from the presence of akatypical observations in the
sample. Once the influence of the latter is downweightedgtltselittte macroeconomic
evidence that suggests that FDI fosters productivity gnowtrecipient countries, even
those with high absorptive capacity. Hence, the more optimiesults of previous stud-
ies should be treated with caution. These earlier resulysmotbe robust to the presence
of outliers in their data. Fortunately, our RIV estimataorgats associated test for outliers,
will allow future research resorting to IV estimations tantl for outliers in a simple

and systematic way.
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Table 1: Bias, Variance and MSE for a 5% contamination of e

Classical Robust
X Z _cons X Z _cons

Contamination of: x

Bias -5.7440 -0.0017 -1.1284-0.0004 0.0005 -0.0014

Variance 0.0754 0.0146 0.02300.0035 0.0009 0.0008

MSE 33.0690 0.0146 1.29630.0035 0.0009 0.0008
Contamination of: w

Bias 0.0067 0.0000 -0.00030.0018 0.0006 -0.0002

Variance 0.0126 0.0008 0.00070.0036 0.0009 0.0008

MSE 0.0126 0.0008 0.0007 0.0036 0.0009 0.0008
Contamination of: z

Bias 0.0006 -0.7226 -0.13820.0016 -0.0018 -0.0011

Variance 0.0060 0.0006 0.00130.0034 0.0009 0.0008

MSE 0.0060 0.5227 0.0204 0.0034 0.0009 0.0008
Contamination of: y

Bias -0.2000 -0.0984 0.40010.0189 0.0093 0.0264

Variance 0.0103 0.0026 0.00110.0037 0.0009 0.0009

MSE 0.0503 0.0123 0.1612 0.0041 0.0010 0.0016
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Table 2: Bias, Variance and MSE for a 10% contamination ofstraple

Classical Robust
X Z _cons X Z _cons

Contamination of: X

Bias -5.6434 -0.0109 -2.35640.0019 -0.0006 -0.0038

Variance 0.4435 0.0600 0.4664€.0039 0.0010 0.0093

MSE 32.2914 0.0601 6.01880.0039 0.0010 0.0093
Contamination of: w

Bias 0.0462 -0.0013 -0.00030.0018 -0.0006 0.0003

Variance 0.2551 0.0014 0.0012.0035 0.0009 0.0008

MSE 0.2572 0.0014 0.00120.0035 0.0009 0.0008
Contamination of: z

Bias 0.0023 -0.9095 -0.08900.0018 -0.0008 0.0003

Variance 0.0064 0.0002 0.00170.0035 0.0009 0.0008

MSE 0.0064 0.8273 0.00970.0035 0.0009 0.0008
Contamination of: y

Bias -0.1981 -0.0974 0.89890.0019 -0.0005 0.0004

Variance 0.0368 0.0088 0.00120.0035 0.0009 0.0008

MSE 0.0761 0.0183 0.80930.0035 0.0009 0.0008

Table 3: Bias, Variance and MSE when there is no contaminatiohe sample

Classical Robust
X Z _cons X Z _cons
Bias 6.91E-05 0.001945 -0.00015 -0.0002 0.001675 -0.00039
Variance 0.002875 0.000693 0.00070@.003304 0.00078 0.000728
MSE 0.0029 0.0007 0.000[7 0.0033 0.0008 0.0007
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Figure 1: Sensitivity of the LS and Tukey Biweight functidosoutliers

Tukey Biweight objective function
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Figure 2: Power of the test for outliers
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Figure 3: IV estimate of

Figure 4: RIV estimate of
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Figure 9: Identification of outliers Figure 10: Ouitliers, without LBR and LUX
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Figure 11: The influence of outliers
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Note: A 75% productivity gap explained by differences irtitgional quality is assumed.
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Figure 12: RIV estimate of, above median Figure 13: RIV estimate of, above median
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Note: Dashed lines correspond to a 95% confidence intervedlidh F'-statistic: 73. Note: Dashed lines correspond to a 95% confidence intervedlidh F-statistic: 66.

Median AR(2)p-value: 0.39. Median Hansen tgstvalue: 0.66. Median AR(2)p-value: 0.74. Median Hansen tgstvalue: 0.35.

Figure 14: RIV estimate of, above median Figure 15: RIV estimate of, above median
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Note: Dashed lines correspond to a 95% confidence intervedlidh F-statistic: 45. Note: Dashed lines correspond to a 95% confidence intervedlidh F-statistic: 74.

Median AR(2)p-value: 0.90. Median Hansen tegstvalue: 0.82. Median AR(2)p-value: 0.36. Median Hansen tgsivalue: 0.77.
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Figure 16: RIV estimate of, above median institutional quality

2 I?
TR TR TR Y . DU Pt
A I
I I | I
L A L T i
s ! i
Rk { i i
z i
So- :
©
=]
=
g
a /I’ '
= I
S WMot o v
5 T By
! o
E “I’., R ey I"v"/tﬂ.l I-,’\;\I;"’V\’VI
Wy
Iy
I
e
-
! T T T T T T
25 3 35 4 45 5

% TFP gap explained by differences in institutional quality

Note: Dashed lines correspond to a 95% confidence intervadlin F-statistic: 72. Median AR(2p-value: 0.88. Median Hansen testvalue: 0.33.
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