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�bstract

This paper uses an infinite hidden �arkov model �IHMM) to analyze U.S. in-

flation dynamics with a particular focus on the persistence of inflation. The

IHMM is a Bayesian nonparametric approach to modeling structural breaks.

It allows for an unknown number of breakpoints and is a flexible and attractive

alternative to existing methods. We found a clear structural break during the

recent financial crisis. Prior to that, inflation persistence was high and fairly

constant.
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1 Introduction

There is ample evidence in the literature that many macroeconomic and financial

time series display structural instability (see, e.g., Stock and Watson, 1996, or Ang

and Bekaert, 2002). Ignoring this feature in model specification can lead to mislead-

ing conclusions and is a main source of poor forecasts. These implications have been

shown by, among others, Clements and Hendry (1999) and Koop and Potter (2001).

Possible changes in the inflation process and its persistence have received espe-

cially much attention in the literature. Inflation persistence, i.e. the speed with

which inflation returns to its base level after a shock, is important for many aspects

of macroeconomics in general and monetary policy in particular. Probably most

importantly, it is at the heart of the revisionism debate initiated by Taylor (1998).

He warned that the decline in the persistence of inflation might lead policymakers to

return to the belief that there is an exploitable trade-off between inflation and unem-

ployment in the long run. Additionally, empirical evidence on inflation persistence

informs theoretical researchers as to the importance, or lack thereof, of allowing for

a dynamically changing inflation persistence in models of price adjustment. Finally,

empirical results also help answer the question whether not only monetary policy

has changed in the U.S., but also the response of inflation to monetary shocks.

However, the empirical evidence on the properties of inflation persistence in the

literature is ambiguous. On one hand, Cogley and Sargent (2001) use a multivariate

time-varying parameter model and find that inflation persistence increased in the

early 1970s, remained high for around a decade and declined afterwards. Their

result is in accordance with the findings of Brainard and Perry (2000) and Taylor

(2000). On the other hand, Stock (2001) applies univariate methods and finds that

inflation persistence was roughly constant and high over the past 40 years. This view

is also supported by Pivetta and Reis (2007).

This article contributes further evidence to this ongoing debate by applying non-

parametric Bayesian techniques to model U.S. inflation dynamics. More specifically,

we use an infinite hidden Markov model (IHMM). The IHMM was introduced by Beal

et al. (2002) and Teh et al. (2006) and has been successfully applied to inferential

problems in fields like genetics (e.g. Beal and Krishnamurthy, 2006) or visual scene

recognition (e.g. Kivinen et al., 2007). However, to our knowledge, the IHMM has

not been applied in the econometric literature so far.
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The IHMM is a nonparametric Bayesian extension of the hidden Markov model

(HMM). A nonparametric Bayesian model is a probability model with infinitely many

parameters (Bernardo and Smith, 1994), or, in other words, a parametrized model

that allows the number of parameters to grow with the number of observations.

However, for a given sample size it will only select a finite subset of the available

parameters to explain the observations. This means that, unlike the HMM, the

IHMM does not fix the number of underlying states a priori, but infers them from the

data. Thus, the IHMM is an attractive alternative to existing change-point models

that typically either assume a small number of change-points (e.g. Chib, 1998) or

assume that the parameters change at each point in time. The latter is referred to

as the time-varying parameter (TVP) model (e.g. Cogley and Sargent, 2001). Other

approaches that allow for a random number of change-points are Koop and Potter

(2007), who propose a model where regime durations have a Poisson distribution, or

Giordani et al. (2007), who present a state-space model that accounts for parameter

instability and outliers, but does not force the parameters to change at each point

in time.

The rest of this paper is organized as follows. In Section 2 we first summarize

the Dirichlet process and the hierarchical Dirichlet process, which are the building

blocks of the IHMM. We then discuss the IHMM and an augmented version of it.

Finally, we analyze the choice of hyperparameters and prior distributions and point

out how inference can be done using Markov chain Monte Carlo methods. Further

details on the sampling algorithm are given in the Appendix. Section 3 uses the

IHMM to model U.S. inflation dynamics and Section 4 concludes.

2 The Infinite Hidden Markov Model

The Dirichlet Process

The Dirichlet process (DP) introduced by Ferguson (1973) is a measure on measures

defined by the following property: A random probability measure G is generated

by a DP if for any partition B1� . . . � Bm on the space of support of G0 the vector

of probabilities [G(B1)� . . . � G(Bm)] follows a Dirichlet distribution with parameter

vector [αG0(B1)� . . . � αG0(Bm)]. We write G ∼ DP(α�G0), where α is a positive

precision parameter and G0 is a base measure defining the expectation, E(G) = G0.
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Sethuraman (1994) showed that any draw G ∼ DP(α�G0) can be represented as

G =
∞�

k=1

πkδθ∗
k
� (1)

where �θ∗k}
∞

k=1 represent a set of support points drawn i.i.d. from G0 and δθ∗
k
is a

probability measure concentrated at θ∗k. The probability weights π = �πk}
∞

k=1 are

coming from a stick­breaking process :

πk = ξk

k−1�

l=1

(1− ξl) with ξl
iid
∼ Beta(1� α)� (2)

which we denote by π ∼ Stick(α).1 We can see that any draw G from a DP(α�G0)

is discrete and can be represented as an infinite mixture of point masses δθ∗
k
.

Another representation of the DP that highlights its discrete nature is the Pólya

urn scheme of Blackwell and MacQueen (1973). The Pólya urn scheme does not

consider G directly but refers to draws θ1� θ2� . . . from G. Blackwell and MacQueen

(1973) show that the conditional distribution of θi given θ1� . . . � θi−1 has the following

form:

θi|θ1� . . . � θi−1 ∼
i−1�

j=1

1

i− 1 + α
δθj
+

α

i− 1 + α
G0. (3)

This means that θi takes on the same value as θj with probability proportional to 1

and is drawn from the base measure G0 with probability proportional to α. Clusters

emerge since θi has a positive probability of being equal to previous draws. Letting

θ∗1� . . . � θ
∗

K denote the distinct values taken on by θ1� . . . � θi−1, we can express equation

(3) as

θi|θ1� . . . � θi−1 ∼
K�

k=1

mk

i− 1 + α
δθ∗

k
+

α

i− 1 + α
G0� (4)

where mk is the number of θi taking the value θ
∗

k.

If we further introduce indicator variables s1� s2� . . . with si = k indicating θi = θ∗k

�Another notation for the stick-breaking process is π ∼ GEM��), where the letters refer to
Griffiths, Engen and McCloskey.
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we obtain

Pr(si = s|s1� . . . � si−1) =
K�

k=1

mk

i− 1 + α
δ(s� k) +

α

i− 1 + α
δ(s�K + 1)� (5)

where δ(s� k) denotes the Kronecker delta2. Equation (5) induces a distribution on

partitions and is referred to as the Chinese restaurant process (CRP, see Pitman,

2006) which is a helpful metaphor for understanding the properties of the DP. Con-

sider a Chinese restaurant with an unbounded number of tables, each serving a unique

dish θ∗k. A new customer θi entering the restaurant chooses a table k in proportion

to the to number of customers already sitting at that table mk and we set θi = θ∗k.

With probability proportional to α he sits at a previously unoccupied table K + 1

and we draw θ∗K+1 ∼ G0 and set θi = θ∗K+1.

The DP is frequently used as a prior on the parameters in a mixture model

which leads to the Dirichlet process mixture model (DPM model). Consider a group

of observations �xi}
N
i=1 with xi

ind
∼ F (θi). The parameters �θi}

N
i=1 are generated

from an unknown mixture distribution G which is drawn from a Dirichlet process

G ∼ DP(α�G0). The DPM model can be expressed as follows:

π ∼ Stick(α)� (6)

si ∼ π� i = 1� . . . � N� (7)

θ∗k ∼ G0� k = 1� . . . �∞� (8)

xi
ind
∼ F (θ∗s�

)� i = 1� . . . � N� (9)

where G =
�

∞

k=1 πkδθ∗
k
and θi = θ∗s�

. The DPM model is depicted as a graphical

model in Figure 1(a).

The Hierarchical Dirichlet Process

In order to link group-specific DPs, Teh et al. (2006) introduced the hierarchical

Dirichlet process (HDP).3 Here, group-specific distributions are conditionally inde-

pendent given a common base distribution G0 and follow Gj ∼ DP(α�G0). The

common base distribution itself follows a Dirichlet process G0 ∼ DP(η�H0). The

2The Kronecker delta is a function of two variables that is 1 if they are equal and 0 otherwise.
3For a survey on hierarchical Bayesian nonparametric models see Teh and Jordan �2010).
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Figure 1: (a) DPM Model and (b) HDPM Model

HDP thus has three parameters: the base measure H0 and the concentration param-

eters α and η. The common base distribution G0 varies around the prior H0 where

the amount of variability is determined by η. The group-specific distributions Gj

deviate from G0 with α governing the amount of variability.

In order to derive a stick-breaking representation for the HDP, we first express

the global measure G0 as:

G0 =
∞�

k=1

γkδθ∗∗
k
� (10)

where �θ∗∗k }
∞

k=1 represent a set of support points drawn i.i.d. from H0 and γ =

�γk}
∞

k=1 ∼ Stick(η). The Gj reuse the same support points as G0 but with different

proportions:

Gj =
∞�

k=1

πjkδθ∗∗
k
. (11)

The weights πj = �πjk}
∞

k=1 are independent given γ (since the Gj are independent

given G0) and one can show that πj
ind
∼ DP(α�γ).

Teh et al. (2006) also develop a Pólya urn scheme for the HDP and we refer to

their paper for technical details on this. The underlying analogue to the CRP is the

Chinese restaurant franchise (CRF). The CRF consists of J Chinese restaurants with

unboundedly many tables that share a buffet line with unboundedly many dishes.

The seating process takes place independently in the restaurants as described before.

Then, each table chooses a dish from the franchise-wide buffet line with a probability
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proportionally to the number of tables (in the entire franchise) that have previously

chosen that dish.

In order to derive the hierarchical Dirichlet process mixture model (HDPMmodel),

we consider J groups of observations ��xji}
Nj

i=1}
J
j=1 with xji

ind
∼ F (θji). The parame-

ters �θji}
Nj

i=1 of the j-th group are generated from an unknown group-specific mixture

distribution Gj for which a HDP prior is assumed. Again, we can consider an indi-

cator variable representation of the HDPM model:

γ ∼ Stick(η) (12)

πj
ind
∼ DP(α�γ)� j = 1� . . . � J� (13)

sji ∼ πj� j = 1� . . . � J� i = 1� . . . � Nj� (14)

θ∗∗k ∼ H0� k = 1� . . . �∞� (15)

xji
ind
∼ F (θ∗∗sj�

)� j = 1� . . . � J� i = 1� . . . � Nj� (16)

where Gj =
�

∞

k=1 πjkδθ∗∗
k
and θji = θ∗∗sj�

. The HDPM model is depicted as a graphical

model in Figure 1(b).

The Infinite Hidden Markov Model

The infinite hidden Markov model (IHMM) was introduced by Beal et al. (2002)

and Teh et al. (2006). To get from the HDPM model to the IHMM (the IHMM

is also referred to as the hierarchical Dirichlet process hidden Markov model, HDP-

HMM), we start with a finite hidden Markov model (HMM). The HMM is a temporal

probabilistic model where the state of the underlying process is determined by a single

discrete random variable. More formally, we have an unobserved state sequence

s = (s1� . . . � sT ) and a sequence of observations y = (y1� . . . � yT ). Each state variable

st can take on a finite number of distinct states: 1� . . . � K. Transitions between

the states are Markovian and parametrized by the transition matrix π with πij =

Pr (st = j|st−1 = i). Each observation yt is conditionally independent of the other

observations given the state st with the corresponding likelihood depending on a

parameter φst
.
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We can write the density of yt given the previous state st−1 as:

p(yt|st−1 = k) =
K�

st=1

p(st|st−1 = k) p(yt|st) =
K�

st=1

πk�st
p(yt|φst

). (17)

We thus have a mixture distribution where the mixture weights πk = �πk�st
}K

st=1 are

specified by st−1 = k and the mixture component generating yt is determined by

st. The HMM can thus be interpreted as a set of K finite mixture models, one for

each possible value of st−1. Expressed differently, each row of the transition matrix

π (indexed by st−1) specifies a different mixture distribution over the same set of

mixture components φ = (φ1� . . . � φK).

In order to derive a nonparametric version of the HMM with an unbounded set

of states, we replace the finite mixture distributions with Dirichlet process mixtures,

again one for each possibly visited state in the previous period. However, we need

to couple the Dirichlet process mixtures in such a way that they share the same set

of states. This can be done using a HDP mixture and we finally obtain the IHMM:

γ ∼ Stick(η). (18)

πk ∼ DP(α�γ)� k = 1� . . . �∞� (19)

st ∼ Multinomial(πst−1
)� t = 1� . . . � T� s0 = 1� (20)

φk ∼ H� k = 1� . . . �∞� (21)

yt ∼ F (φst
)� t = 1� . . . � T� (22)

The IHMM is shown as a graphical model in Figure 2 (for now, we ignore κ which

will be introduced in the next section).

The Sticky IHMM

Equation (19) shows that each row of the transition matrix is drawn from the same

DP and, thus, the IHMM does not differentiate between self-transitions and transi-

tions to other states. However, many economic time series exhibit state persistence,

and we would like to incorporate this feature into the prior in order to rule out un-

realistic high dynamics in the state sequence. Fox et al. (2007, 2008) address this

issue by introducing the so called Sticky IHMM and we follow their approach in this
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Figure 2: The infinite hidden Markov model (IHMM)

paper. Their idea is to increase the prior probability E(πkk) of a self-transition by

introducing a positive parameter κ into equation (19) which then becomes:

πk|α�γ� κ ∼ DP

�

α + κ�
αγ + κδk

α + κ

�

� k = 1� . . . �∞. (19*)

Thus, an amount κ is added to the k-th component of αγ which leads to an increased

probability of self-transitions. Note that the original IHMM can be obtained by

setting κ = 0.

The metaphor that Fox et al. (2007, 2008) develop for their extended model is

the CRF with loyal customers. Each restaurant now has a specialty dish that has the

same index as the restaurant. This dish is served everywhere (since the restaurants

still share the same buffet line) but is more popular in its namesake restaurant. In

other words, each restaurant now has a specific rating of the buffet line that puts

more weight on the specialty dish.

Hyperparameters and Prior Distributions

First, we must specify the distribution of the observations F (yt|φst
) and the base

measure H. In our application to inflation dynamics we assume that the observations

are normally distributed:

yt = x�

tβst
+ εt� εt ∼ N(0� σ

2
st
)� t = 1� . . . � T. (23)
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We then choose a normal-inverse gamma distribution as base measure:

βk|σ
2
k ∼ N(b0� σ

2
k�0)� σ2

k ∼ Inv-Gamma

�
c0
2
�
d0

2

�

� k = 1� . . . �∞. (24)

Note that the normal-inverse gamma distribution is conjugate which leads to straight-

forward and efficient sampling of the βj and σ2
j . However, non-conjugate cases could

be handled as well with only minor modifications. We treat the hyperparameters

b0��0� c0� d0 as fixed; another approach would be to place further prior distributions

on them.

In contrast, the concentration parameters α and η and the self-transition parame-

ter κ are treated as unknown quantities which we learn from the data by performing

full Bayesian inference. Fox et al. (2007, 2008) show that it is convenient not to

work with α and κ directly but instead with α+ κ and ρ = κ/(α+ κ) and place the

following prior distributions on them:

α + κ ∼ Gamma(e0� f0)� (25)

ρ ∼ Beta(g0� h0). (26)

Finally, η is given a gamma prior:

η ∼ Gamma(r0� s0). (27)

Inference via MCMC Sampling

Since the sticky IHMM is too complex to be analyzed analytically, we need to resort

to MCMC sampling techniques (for a comprehensive survey on these methods see,

for example, Robert and Casella, 2004). In principle, it is straightforward to set up

a Gibbs sampler that alternates between drawing the state sequence, the parame-

ters and the hyperparameters. However, a sampler that sequentially updates each

state given all other state assignments generally mixes very slowly due to strong

dependencies between consecutive time points.

For this reason, it is more efficient to sample the whole state sequence in one block.

However, common dynamic programming algorithms, like the forward-backward al-

gorithm (Rabiner, 1989), cannot be applied because of the infinite number of states.
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One solution to this problem is to work with a finite approximation to the DP (Ish-

waran and Zarepour, 2002) which is done in Fox et al. (2007, 2008). Another option

is to follow Van Gael et al. (2008) who propose beam sampling for the IHMM. Their

algorithm uses the concept of slice sampling (Neal, 2003) and is related to the ap-

proach of Walker (2007) for DPMmodels. The basic idea is to augment the parameter

space with a set of auxiliary variables u = (u1� . . . � uT ). These auxiliary variables do

not change the marginal distributions of the other variables but adaptively reduce

the set of all valid state sequences to a finite one, such that dynamic programming

techniques can be applied.

In our application, we use the beam sampling algorithm for drawing the state

sequence. The Gibbs sampling steps for the parameters and hyperparameters are

the same as in Fox et al. (2007, 2008). The complete MCMC sampling algorithm

is described in the Appendix. For further details and derivations we refer to the

original articles.

3 U.S. Inflation Dynamics

In this section we employ the sticky IHMM to analyze the dynamics of U.S. infla-

tion. We measure the price level Pt using seasonally adjusted quarterly data on the

PCE deflator obtained from the Bureau of Economic Analysis. Annualized quarterly

inflation is then calculated as πt = 400 ln(Pt/Pt−1). Our sample goes from 1953:I to

2009:III and we use earlier data to initialize the lags of our model.4

The inflation series is plotted in Figure 3. Starting out low, inflation rose during

the 1970s, reaching a first peek at 11.7� in 1974 and a second peek at 11.8� in 1980.

Then, the restrictive monetary policy of the Federal Reserve under Paul Volcker suc-

ceeded in lowering inflation to 2.6� in 1983. Afterwards, the inflation rate remained

rather stable, with the exception of 2008, when it experienced a sharp drop during

the recent banking crisis.

Table 1 includes summary statistics for five different periods of the overall sample.

The first-order autocorrelation, which gives us a first indication on the persistence of

inflation, was rather low before 1965. During the subsequent 20 years, it was much

higher, but declined again after 1985. In the end it was even lower than at the start

4The starting point of the sample is the same as in Nelson and Schwert �1977) and Stock and
Watson �2007).
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Figure 3: U.S. Inflation Dynamics

of the sample.

As stated above, we assume that inflation is normally distributed and choose to

work with a 4th-order autoregressive (AR) representation. Equation (23) becomes

πt = β0�st
+

4�

i=1

βi�st
πt−i + εt� εt ∼ N(0� σ

2
st
)� t = 1� . . . � T. (23*)

Thus, yt = πt, xt = (1� πt−1� . . . � πt−4) and βst
= (β0�st

� β1�st
� . . . � β4�st

). We use the

Period 1953:I 1965:I 1975:I 1985:I 1995:I
- 1964:IV - 1974:IV - 1984:IV - 1994:IV - 2009:III

Mean 1.489 4.533 6.420 3.223 2.049
S.D. 1.144 2.651 2.380 1.217 1.529
Autocorrelation 0.359 0.825 0.747 0.447 0.250

Table 1: Summary Statistics for Different Periods
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prior distributions stated in equations (24) - (27) and choose the prior parameters

in the following way. We set b0 = 0 and assume �0 to be diagonal with the prior

variance of the intercept equal to 5 and the prior variances of the AR coefficients

equal to 1. Further, we set c0 = 5 and d0 = 3, which implies that σ
2
j has a prior mean

of 1.0 and a prior variance of 2.0. The prior distributions for the hyperparameters

are assumed to be rather uninformative: e0 = 125, f0 = 5, g0 = 10, h0 = 1, r0 = 5,

s0 = 1. Our results are based on every 50-th of 500,000 samples from the MCMC

output after a burn-in period of 50,000 iterations.5

A histogram of the number of inferred states is shown in the top panel of Figure

4. The posterior mode is 5, but we see that the MCMC sampler averages over a

large set of values ranging from 2 to 15. The middle two panels of Figure 4 show

estimates of the state sequence at two randomly picked iterations of the MCMC

sampler. In panel (b), which shows the estimates at iteration 100,000, the sequence

consists of 6 different states, in panel (c), which gives the estimates at iteration

200,000, of 4 states. However, not only the numbers of states differ but also the

patterns of the sequences. In panel (b) most observations belong to either state 1

or 3, and the sequence switches rather often between these two states. In panel (c),

most observations are in state 1 or in state 2, and the sequence switches only once

from state 1 to state 2 and once back. This example shows that the data are not

overly informative about the actual state pattern. Therefore, it is very important to

employ a flexible framework like the IHMM in modeling. The two estimated state

sequences also demonstrate the IHMM’s capability of dealing with outliers. In panel

(b), the observations at 1954Q3 and 2008Q4 are identified as outliers, each being the

only observation in the respective state. Similarly, only a few observations occupy

states 3 and 4 in panel (c).6 Finally, the bottom panel of Figure 4 shows posterior

means of the break probabilities Pr(st �= st−1). The three peaks are dated 1973Q1,

where we have a posterior break probability of 0.458, 1981Q2 with a posterior break

probability of 0.567 and 2008Q4 with a posterior break probability of 0.998.

Figure 5 displays posterior means and 10� and 90� quantiles for the intercept,

the variance and the sum of the AR coefficients
�4

i=1 βi�st
. The latter serves as

5The algorithm is coded in C++. It takes around 30 minutes to draw 550,000 samples using a
3 GHz Intel �R) Core �TM) 2 Quad processor �employing a non-parallelized version of the code).

6In order to accommodate outliers, we also experimented with a version of the model where the
observations were assumed to be drawn from a Student’s t-distribution. However, the results did
not differ substantially from those based on the normal distribution presented here.
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our measure of persistence.7 The intercept displays some variablities around 1975

and at the end of the sample, otherwise, it stays rather constant. However, the

credible interval is rather wide. The variance is more fluctuating, being highest

between 1973Q2 and 1981Q1. However, the credible set is very wide as well, and

we cannot rule out a constant variance level. Finally, the sum of the AR coefficients

is highest between 1973Q1 and 1974Q1 and between 1976Q4 and 1981Q1. Our

measure of persistence displays a clear structural break during the recent banking

crisis. Furthermore, the 90� posterior quantile always stays close to 1, and the

credible set includes 1 at 38� of the points in the sample period. These results

lead to the conclusion that, with the exception of the end of the sample, inflation

persistence was high and nearly constant. However, the credible interval is very

wide. Therefore, a considerable amount of uncertainty about the exact properties of

inflation persistence remains.

Figure 6 presents the outcome of a prior sensitivity analysis focusing on inflation

persistence. We argued above that our main results are based on rather uninformative

priors for the hyperparameters. In order to verify this, we employed three more

informative priors, each of them changing one pair of hyperparameters compared to

the prior used in the main analysis. First, we set r0 = 100 and s0 = 10. This forces η

to be higher and, thus, leads to a global transition distribution γ that is not as sparse

as the original one. The top panel shows posterior means and 10� and 90� quantiles

for the sum of the AR coefficients under this prior. Comparing these results with our

main results in Figure 5(c), we see that they are nearly the same. The results do not

change much either if we force α + κ to be higher by setting e0 = 1000 and f0 = 25

(see the panel in the middle). Finally, we set g0 = h0 = 5, which implies a smaller

number of self-transitions. The result is shown in the bottom panel. We see that

inflation persistence is more bumpy, and the credible intervals are slightly narrower.

However, the main conclusions about the properties of inflation persistence do not

change.

7For a discussion of this persistence measure and possible alternatives see Pivetta and Reis
�2007). We also calculated the largest autoregressive root as another measure of persistence and
obtained results that lead to the same conclusions.
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4 Conclusions

We applied the infinite hidden Markov model (IHMM) to analyze U.S. inflation

dynamics. The IHMM is a Bayesian nonparametric extension of the hidden Markov

model (HMM). This means it does not fix the number of states a priori but learns

it from the data. Thus, the IHMM is a convenient and flexible approach to model

economic time series allowing for an unknown number of structural breaks.

We used the described MCMC algorithm for posterior inference and focused on

the sum of AR coefficients as a measure of inflation persistence. We found a clear

structural break during the recent financial crisis. Prior to that, inflation persistence

was high and approximately constant since 1953. However, the credible intervals were

wide; thus, a substantial amount of uncertainty about inflation dynamics remained.
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Figure 4: (a) Number of Different States (K), (b) and (c) State Sequence at Two
Iterations of the MCMC Sampler, and (d) Posterior Break Probabilities

16



(a) Intercept

1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005

−
1

0
1

2
3

(b) Variance

1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005

0.
0

0.
5

1.
0

1
.5

2.
0

2.
5

(c) Sum of AR Coefficients

1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005

−
1.
5

−
0.
5

0.
5

1.
0

1.
5

Figure 5: Means and 10� and 90� Quantiles of the Posterior Distributions: (a)
Intercept, (b) Variance, and (c) Sum of AR Coefficients
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(a) Alternat ive P rior 1
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Figure 6: Prior Sensitivity Analysis
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Appendix: Implementation of the MCMC Sampler

This Appendix gives details on the MCMC sampler which combines the beam sam-

pling algorithm of Van Gael et al. (2008) with the sampling techniques for the sticky

IHMM derived in Fox et al. (2007, 2008). The parameters that need to be sampled

are the hyperparameters η, α and κ, the global transition distribution γ, the transi-

tion distributions π = �πk}
K
k=1, the state sequence s = �st}

T
t=1, and the parameters

of the outcome distributions θ = �βk� σ
2
k}

K
k=1. K denotes the number of distinct

states (which are labeled 1� . . . � K) and changes during sampling. The auxiliary vari-

ables u = �ut}
T
t=1 are introduced to make the set of possible state sequences finite.

Another set of auxiliary variables consists of m = ��mjk}
K
j=1}

K
k=1, where (in terms

of the Chinese restaurant franchise) mjk denotes the number of tables in restaurant

j that were served dish k, r = �rk}
K
k=1, where rk denotes the number of tables in

restaurant k that eat the namesake dish k but originally considered to eat another

dish (and finally were overridden due to the increased probability of a self-transition),

and m = ��mjk}
K
j=1}

K
k=1, where mjk denotes the number of tables in restaurant j

that considered to eat dish k. The auxiliary variables v = �vk}
K
k=1, w = �wk}

K
k=1, ν,

and λ are helpful for sampling the hyperparameters. Finally, njk counts the number

of transitions from j to k in the state sequence s. Sums are denoted by dots, i.e.

x∙b =
�

a xab, xa∙ =
�

b xab, and x∙∙ =
�

b

�
a xab. The MCMC sampler then consists

of the following steps:

(0) Initialize parameters: Choose a starting value for K and initialize all

parameters. The infinitely many states that do not occur in s are merged into

one state. Thus γ and each πk have K + 1 elements.

(1) Sampling u: For t = 1� . . . � T , sample ut from ϕ(ut|π� st−1� st) = U(0� πst−1st
),

where U(a� b) denotes the uniform distribution on the interval (a� b).

(2) Sampling s:

(i) If necessary, break π and γ: While max(�πk�K+1}
K
k=1) > min(�ut}

T
t=1),

repeat the following steps:

(a) Draw πK+1 ∼ Dirichlet(αγ).

(b) Break the last element of γ:
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(b-1) Draw ζ ∼ Beta(1� η).

(b-2) Add element γK+2 = (1− ζ)γK+1 .

(b-3) Set γK+1 = ζγK+1.

(c) Break the last element of each πk. For k = 1� . . . � K + 1:

(c-1) Draw ζk ∼ Beta(αγK+1� αγK+2).

(c-2) Add element πk�K+2 = (1− ζk)πk�K+1.

(c-3) Set πk�K+1 = ζkπk�K+1.

(d) Sample σ2
K+1 ∼ Inv-Gamma

�
c0
2
� d0

2

�
and βK+1 ∼ N(b0� σ

2
K+1�0).

(e) Increment K.

(ii) Sample s: Sample s from ϕ(s|π�u�θ):

(a) Working sequentially forward in time, calculate

mt(k) = P(y1� . . . � yt|st = k�u):

(a-1) Initialize m1(k) = 1(u1 < π1k)N(y1|x
�

1βk� σ
2
k) for k = 1� . . . � K.

(a-2) Induce mt(k) =
�K

l=1 1(ut < πlk)N(yt|x
�

tβk� σ
2
k)mt−1(l)

for t = 2� . . . � T and k = 1� . . . � K.

(b) Working sequentially backwards in time, sample state indicators:

(b-1) Sample sT from
�K

k=1 mT (k)δ(st� k).

(b-2) Sample st from
�K

k=1 mt(k)δ(st� k)1(ut+1 < πk�st�1
)

for t = T − 1� . . . � 1.

(3) Cleaning up: Remove the redundant states and relabel the remaining ones

from 1� . . . � K. Adapt γ, π, β, and σ2 accordingly.

(4) Sampling auxiliary variables m, r and m:

(i) Sample m: For j = 1� . . . � K and k = 1� . . . � K, sample mjk from

ϕ(mjk|s� γk� α� κ) as follows: Set mjk = 0. For i = 1� . . . � njk, sample

xi ∼ Bernoulli
�

αγk+κδ�j�k)
i−1+αγk+κδ�j�k)

�
. If xi = 1 increment mjk.

(ii) Sample r: For j = 1� . . . � K, sample rj from

ϕ(rj|mjj� γj� α� κ) = Binomial
�
mjj�

ρ

ρ+γj�1−ρ)

�
, where ρ = κ

α+κ
.

(iii) Update m: For j = 1� . . . � K and k = 1� . . . � K, set mjk = mjk if j �= k,

set mjk = mjk − rj if j = k.
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(5) Sampling γ: Draw γ from ϕ(γ|m� η) = Dirichlet(m∙1� . . . �m∙K � η).

(6) Sampling π: For k = 1� . . . � K, sample πk from

ϕ(πk|γ� s� α� κ) = Dirichlet(αγ1+nk1� . . . � αγk+κ+nkk� . . . � αγK+nkK � αγK+1).

(7) Sampling θ: For k = 1� . . . � K, sample σ2
k ∼ Inv-Gamma

�
c∗
2
� d∗

2

�
and βK+1 ∼

N(b∗� σ
2
K+1�∗) with�∗ = (B

−1
0 +

�
t:st=k xtx

�

t)
−1, b∗ = �∗(�

−1
0 b0+

�
t:st=k xtyt),

c∗ = c0 +
�

t:st=k 1 and d∗ = d0 + s2 + (β̂ − β∗)
�(
�

t:st=k xtx
�

t)�∗�
−1
0 (β̂ − β∗),

where β̂ = (
�

t:st=k xtx
�

t)
−1

�
t:st=k xtyt and s2 =

�
t:st=k(yt − x�

tβ̂)
2.

(8) Sampling hyperparameters α, κ and η:

(i) Sample α + κ:

(a) For k = 1� . . . � K, sample vk from ϕ(vk|α+κ� s) = Bernoulli
�

nk∙

nk∙+α+κ

�
.

(b) For k = 1� . . . � K, sample wk from ϕ(wk|α+κ� s) = Beta (α + κ+ 1� nk∙).

(c) Sample α + κ from

ϕ(α+ κ|v�w�m) = Gamma
�
e0 +m∙∙ −

�K

k=1 vk� f0 −
�K

k=1 logwk

�
.

(ii) Sample ρ: Draw ρ from ϕ(ρ|m� r) = Beta(g0 + r∙� h0 +m∙∙ − r∙).

(iii) Calculate α and κ: Set α = (1− ρ)(α + κ) and κ = ρ(α + κ).

(iv) Sample η:

(a) Sample ν from ϕ(ν|η�m) = Bernoulli
�

�∙∙

�∙∙+η

�
.

(b) Sample λ from ϕ(λ|η�m) = Beta(η + 1�m∙∙).

(c) Sample η from ϕ(η|λ� ν�m) = Gamma
�
r0 +K − ν� s0 − log λ

�
, where

K =
�K

k=1 1(m∙k > 0).

(9) Repeat �1) - �8).
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