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Abstract

Bilateral oligopoly is a strategic market game with two commodi-
ties, allowing strategic behavior on both sides of the market. When
the number of buyers is large, such a game approximates a game of
quantity competition played by sellers. We present examples which
show that this is not typically a Cournot game. Rather, we introduce
an alternative game of quantity competition (the market share game)
and, appealing to results in the literature on contests, show that this
yields the same equilibria as the many-buyer limit of bilateral oligopoly,
under standard assumptions on costs and preferences. We also show
that the market share and Cournot games have the same equilibria if
and only if the price elasticity of the latter is one. These results lead
to necessary and su¢ cient conditions for the Cournot game to be a
good approximation to bilateral oligopoly with many buyers and to an
ordering of total output when they are not satis�ed.
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1 Introduction

In this paper we investigate quantity competition in a market with few sellers
and many buyers, but in which price-taking behavior is not imposed on the
latter by �at. We model the interactions this gives rise to as a game of
bilateral oligopoly. This is a strategic market game with two commodities:
a consumption good as well as commodity money, in which both buyers and
sellers are assumed to act strategically. When the set of buyers becomes
large, we might expect their individual choices to approach price-taking
behavior and, if the number of sellers remains small, this will lead to a game
of quantity competition. The question then arises: what is the nature of
this quantity competition?

We show by example that, whilst there are types of buyer preferences for
which the answer to this question is the Cournot game [5], this will not be
true in general. This raises additional questions: under what circumstances
is Cournot equilibrium a good approximation to bilateral oligopoly with
many buyers and, when it is not, what is the relationship between Cournot
equilibrium and the many-buyer limit of equilibria in bilateral oligopoly?

At the heart of the answers we o¤er to these questions is a model of
quantity competition which is a variant of the Cournot game. The latter
implicitly assumes the existence of a mechanism, which we label an auction-
eer, to ensure markets clear once sellers have committed to their quantity
decisions and it will prove convenient to model this as a two-stage game in
which sellers choose quantities in the �rst stage and the auctioneer, viewed
as a player, moves in the second stage. We suppose that the auctioneer
chooses aggregate revenue R and has a payo¤ function which, given ag-
gregate output of sellers X, is maximized when the revenue raised at the
market-clearing price when output is X is exactly equal to R. The �rst
stage of this sequential game is a conventional Cournot game and its sub-
game perfect equilibrium is output-equivalent to the Cournot equilibrium.
Our alternative model is derived from this game by reversing the timing of
auctioneer and sellers.

This yields a market sharing game in which the auctioneer chooses rev-
enue at the �rst stage and sellers choose quantities in the second; strategy
spaces and payo¤s are unchanged. Appealing to some results in the litera-
ture on the theory of contests, we show that, if sellers�costs are increasing
and convex and demand is decreasing and has a choke-o¤ price that is not
too low, the market share game will have a unique non-autarkic equilibrium.
(We also consider the possibility that the auctioneer plays simultaneously
with the sellers in a single stage game and show that the outputs of sellers
in the Nash equilibrium of this game coincide with those on the equilibrium
path of the market share game.) When the set of buyers is made large by
replicating a �nite set of types whilst proportionately reducing the weight
of each buyer, bilateral oligopoly can be recast in a form that resembles the
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market share game. This observation can be used to show that outcomes
in the non-autarkic equilibrium of bilateral oligopoly approach those of the
market share game. Furthermore, buyers behave as price takers facing the
equilibrium strategic price.

We can use these observations to investigate the relationship between
the many-buyer limit of bilateral oligopoly and the Cournot game, since
the former approaches the market share game. Whilst markets clear in
both the market share and Cournot games, the choices of sellers on the
equilibrium path of the subgame perfect equilibria under the two timing
structures may di¤er. If the Cournot game has an equilibrium at which
the elasticity of demand is unity, then the price and pro�le of outputs are
shown to be exactly the same in this equilibrium as in the non-autarkic
equilibrium of the market share game. Under this supposition, the many-
buyer limit of non-autarkic equilibria in bilateral oligopoly agrees in price
and outputs with Cournot oligopoly. However, if the Cournot game has
an equilibrium at which demand elasticity exceeds one, aggregate output in
the latter equilibrium will exceed the aggregate output in the market share
game. When the elasticity is less than one, this ordering is reversed.

These results generalize the observations of Codognato [2], and highlight
two insights. Firstly, just as Kreps and Scheinkman [11] demonstrated that
the �game form�in Bertrand competition matters, we show the same to be
true in Cournot competition. As such, the structure of the market should be
considered before analysis à la Cournot is applied. For, implicit in Cournot�s
de�nition is that sellers commit to their supply decisions before decisions by
the demand side (represented by the auctioneer) become known. If this is
not satis�ed, our results show that outcomes are di¤erent, and we provide
an appropriate model - the market share game - to analyze such market
environments. Moreover, the market share game has a strategic foundation
in bilateral oligopoly.

Secondly, the non-convergence of fully strategic (bilateral oligopoly) equi-
libria to Cournot equilibria is a general phenomenon: only in very speci�c
circumstances does convergence occur. As such, bilateral oligopoly is not an
appropriate model to provide a strategic foundation for Cournot competi-
tion, and the analysis furthers our knowledge pertaining to the relationship
between models with few sellers and many buyers without price-taking pre-
sumptions, and Cournot competition.

General strategic market games were originally introduced by Shapley
and Shubik (see, for example, [15]), and subsequently studied extensively
(see Dubey [7] or Giraud [10] for comprehensive reviews). The model we
use is a specialization of these multiple-commodity frameworks to a market
for a single consumption commodity with trade in a commodity money, �rst
studied by Gabszewicz and Michel [8]. The relationship between equilib-
ria in strategic market games and Walrasian equilibria with many agents
on both sides of the market has seen much attention and is well under-

3



stood (see Mas-Colell [12] for a review). However, the relationship between
bilateral oligopoly with many buyers but few sellers and Cournot competi-
tion (or more generally between strategic market games and general equi-
librium models of Cournot competition discussed by Gabszewicz and Vial
[9]) is less well explored. There are few recent exceptions to this: Codog-
nato [2] provides two examples demonstrating convergence in one case, and
non-convergence in the other, of outcomes in bilateral oligopoly to Cournot
outcomes as the number of buyers increases by replication. Busetto, Codog-
nato and Ghosal [1] also highlight this non-equivalence in a model with a
continuum of agents with some atoms (the oligopolists), and proceed by con-
sidering the relationship between a two-stage respeci�cation of the strategic
market game and Cournot�s model. We contribute to this literature by
identifying a game that is the many-buyer limit of bilateral oligopoly and
develop necessary and su¢ cient conditions under which outcomes in this
model of quantity competition will be equal to those in Cournot oligopoly.

Our analysis of quantity competition and comparison between models is
made possible by exploiting the aggregative properties of the games we con-
sider. �Aggregativeness�in games was originally recognized and exploited by
Selten [14]. The method was employed by Novshek [13] in proving existence
of equilibrium in Cournot competition, and it has been successfully used in
the study of contests (see, for example, Cornes and Hartley [3], Stein [16]
and Szidarovsky and Okuguchi [17]), the results from which we apply di-
rectly in some of our analysis. Dickson and Hartley [6] extended the ideas
behind the analysis of these games with a single aggregate to study bilateral
oligopoly using an extension of the methodology. The current paper builds
on this by comprehensively investigating the nature of bilateral oligopoly
when the number of traders on only one side of the market becomes large.

The rest of the paper is structured as follows. In the next section we
present the model of bilateral oligopoly with replicated buyer types and
analyze the many-buyer limit in two examples. In one, equilibria approach
the Cournot equilibrium, but in the other this is typically not the case.
In Section 3, we formulate the market share game and present conditions
under which it has a unique non-autarkic equilibrium. In Section 4, we
investigate conditions under which the many-buyer limit of equilibria in
bilateral oligopoly is the same as that of the market share game. Combining
these results in Section 5, we show that unit elasticity of demand at the
Cournot equilibrium is necessary and su¢ cient for this equilibrium to be a
good approximation to that of bilateral oligopoly with many players. We
also study the ordering of aggregate output in Cournot and (limit) bilateral
oligopoly games when equilibrium elasticity di¤ers from one. Section 6
concludes and some proofs omitted from the main exposition are collected
in an appendix.
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2 Bilateral Oligopoly

In this section, we outline a variant of the model of bilateral oligopoly in-
troduced by Gabszewicz and Michel [8]. This model, which is a specialized
strategic market game in the Shapley-Shubik vein [15], permits strategic
behavior on each side of a market in which signals are quantity-based.

There is one consumption commodity, as well as commodity money, and
two sets of agents: sellers and buyers. Since we will be interested in equilib-
ria of games with many buyers, we consider a sequence of economies, which
we denote Em for m = 1; 2; 3; : : :. All economies share the same set of sell-
ers: a set IS = f1; : : : ; ng, with at least two members. The set of buyers is
formed by replication of a �nite, non-empty set of types IB. In Em, there
are m replicas of each buyer, so the buyer set is IBm = IB�f1; : : : ;mg. To
avoid limiting equilibrium prices becoming in�nite, we will give each buyer
a weight of 1=m (and sellers unit weight). If IB is a singleton, we consider
only values of m exceeding 2.

We suppose that each seller i is endowed only with a production tech-
nology that can supply x (� 0) units of the consumption good at a cost
Ci (x), denominated in terms of commodity money. A buyer of type i
is endowed only with ei > 0 units of money and can place a money bid
b 2 [0; ei]. The market aggregates supply to X =

P
j2IS xj and money bids

to B =
P
j2IBm bj=m and determines the strategic (market clearing) price as

p = B=X (so long as1 B;X > 0). A seller who supplies x receives revenue
xp and evaluates supply choices according to the payo¤ function:

xp� Ci (x) =
x

X
B � Ci (x) . (1)

Note that seller i receives a share of total revenue proportional to its supply;
a fact we exploit in the sequel. Similarly, buyers receive a share of total
output of the good proportional to their bid. After trading a typical buyer
has b=p units of the good and is left with ei� b units of money. We assume
the preferences of buyers are representable by a utility function, ui, so type
i 2 IB receives payo¤

ui

�
b

B
X; ei � b

�
.

We study pure-strategy Nash equilibria of these games and observe that
there is always a no-trade equilibrium in which xi = 0 for all i 2 IS and
bi = 0 for all i 2 IB. We therefore focus on non-autarkic equilibria2 in
which B;X > 0 and, in particular, study the limit of these equilibria as

1 If either B or X are zero, the market is deemed closed and no trade takes place.
2Under the assumptions on cost functions and preferences we introduce later, there is

a unique non-autarkic equilibrium in which buyers of the same type make the same bids.
We therefore loosely refer to behavior of types of buyers, meaning the common choice of
all buyers of that type.
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m ! 1. It is instructive to compare this limit with Cournot equilibria in
which competitive demand is the aggregate demand of buyers in IB, acting
as price-takers. We commence with two examples; the �rst presents an
adaptation of a result of Codognato [2] to our framework.

Example 1 Suppose there are two sellers with identical quadratic costs
given by 1

2x
2 + 
x,3 and one buyer type with a unit endowment of money

and preferences given by u (y1; y2) = y�1 y
1��
2 , where 0 < � < 1. Competitive

inverse demand is p (X) = �=X and there is a unique4 Cournot equilibrium
in which aggregate supply is

~XC = �
 +
p

2 + �:

In bilateral oligopoly the �rst-order conditions can be used to verify that,
for m � 2, there is a non-autarkic equilibrium of Em in which the weighted
aggregate bid is

~Bm =
�m� �
m� �

and the aggregate o¤er is

~Xm = �
 +
q

2 + ~Bm.

A result in [6] (Theorem 5.3) can be used to show that this is the unique
non-autarkic equilibrium of Em.

As m ! 1, ~Bm ! � and ~Xm ! ~XC. It can also be checked that
~Bm= ~Xm converges to the market price in the Cournot equilibrium and buy-
ers�equilibrium consumption approaches price-taking levels at this price.

In this example, market outcomes in bilateral oligopoly approach the
outcome at the Cournot equilibrium in the many-buyer limit. Indeed, it is
straightforward to verify that this extends to any set of buyer types with
Cobb-Douglas preferences and that symmetry amongst sellers is inessen-
tial. However, the next example shows that Cobb-Douglas preferences are
working particularly hard to give us this conclusion.

Example 2 Suppose there are two sellers with identical quadratic costs
given by 1

2x
2 + 
x, and one buyer type with a unit endowment of money

and quadratic preferences given by u (y1; y2) = �y1� 1
2y
2
1 + y2, where � > 
.

3Additionally, since we allow for 
 < 0 we should impose that marginal costs are
positive along best response functions. For brevity, we omit the details of the parameter
restrictions that guarantee this, but note that in this and the following example there is
a non-empty set of parameters that do indeed satisfy this restriction.

4This example satis�es the uniqueness conditions of Szidarovsky and Yakowitz [18].
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In this case, competitive inverse demand is p (X) = max f� �X; 0g and
equilibrium supply at the unique5 Cournot equilibrium is

~XC =
� � 

2

.

In bilateral oligopoly, the uniqueness theorem in [6] can be applied again
to conclude that there is a unique non-autarkic equilibrium of Em for all
large enough m, in which the aggregate o¤er is

~Xm =
(m� 1)� � 2
m

2m� 1

and the aggregate bid is

~Bm =
m� 1
m

~Xm
�
� � ~Xm

�
.

Note that

lim
m!1

~Xm =
� � 2

2

.

and this limit di¤ers from ~XC except when 
 = 0. A fruitful way of display-
ing this observation is to note that the price elasticity of competitive demand

at the Cournot equilibrium, �
�
~XC
�
, satis�es

sign
n
�
�
~XC
�
� 1
o
= sign f
g .

It follows that the limiting aggregate o¤er is equal to ~XC if and only if

�
�
~XC
�
= 1. If this holds, we can also verify convergence of buyers� con-

sumption and the market price to Cournot equilibrium values. Otherwise,
~XC > (<) limm!1 ~Xm if and only if �

�
~XC
�
> (<) 1.

In the second example, convergence to Cournot equilibrium is excep-
tional and this suggests that there may be an alternative quantity compe-
tition game played by sellers that better represents bilateral oligopoly with
many buyers. In the next two sections, we describe and analyze such a
game (the market share game) and then discuss the relationship between
its equilibrium and the limits of the equilibria of the sequence of bilateral
oligopoly games.

5Whilst this example does not satisfy the conditions of Szidarovsky and Yakowitz [18],
weaker conditions that encompass our example are shown in section 4.2 of Vives [19] to
give rise to a unique equilibrium.
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3 The market share game

In this section, we introduce a quantity-competition game played by pro�t-
maximizing sellers in which buyers are assumed to be price takers. It will
be convenient to view this game as a variation of Cournot oligopoly and we
start by casting the latter as a two-stage game, denoted G+. In the �rst
stage of G+, each seller i 2 IS chooses output xi and this determines total
output X =

P
j2IS xj . In the second stage, an auctioneer sets a price to

clear the market. Note that setting a price in this game is equivalent to
choosing the total revenue received by sellers, which write R. The revenue
of seller i is equal to a share xi=X of R. We can view the auctioneer as
a player whose payo¤ is maximized if and only if R is equal to the revenue
received from buyers when price is chosen so that aggregate demand is X
(i.e. such that the market clears).

The market share game, denoted G�, is obtained simply by changing
the order of the stages so that the auctioneer chooses R in the �rst stage.
In the second stage, sellers compete for a share of this revenue by choosing
outputs simultaneously. Formally, the second stage game takes the form
of a Tullock contest with, in general, non-linear costs. We also discuss the
single-stage game G0 in which the auctioneer moves at the same time as the
sellers.

Seller i 2 IS in all three games has strategy set fxi : xi � 0g and payo¤
equal to its pro�t function �i, where

�i(x1; : : : ; xn) =
xi
X
R� Ci (xi) (2)

if xi 6= 0 and �i = 0 if xi = 0. Ci, the cost function of seller i, is assumed
to be smooth, increasing and exhibit non-increasing returns.

Assumption A1 For all i 2 IS, the cost function Ci is convex, continu-
ously di¤erentiable and satis�es Ci(0) = 0 and C 0i(xi) � 0 for xi � 0 with
strict inequality if xi > 0.

Where appropriate, we interpret C 0i (0) as a one-sided derivative.
Passive buyer behavior is captured by the inverse demand function p (�),

which is decreasing where positive, approaches or is equal to 0 for large X
and does not vanish.

Assumption A2 Inverse demand p, de�ned for X > 0 is continuous,
strictly decreasing where positive and satis�es

inf
X>0

p (X) = 0 < sup
X>0

p (X) .

The auctioneer has strategy set fR : R � 0g and a payo¤function � (X;R)
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that incentivizes the role of market clearing:

� (X;R)

8<:
= 0 if X > 0 and R = Xp+ (X) ,
= 0 if X = 0 and R = 0, and
< 0 otherwise.

(3)

In G+, we seek a subgame perfect equilibrium and note that, in any
second-stage subgame of G+ in which the aggregate output in the �rst stage
isX, the auctioneer maximizes payo¤by choosing R = Xp (X). This means
that the payo¤ of seller i in the �rst stage is seen as xip (X) � Ci (xi) and
shows that the strategy pro�le of sellers in a subgame perfect equilibrium is
a Cournot equilibrium.

In G�, there is always a null subgame perfect equilibrium in which the
auctioneer plays R = 0, for then every seller chooses zero output in the
subgame determined by R = 0 and the auctioneer receives maximum (zero)
payo¤. We therefore seek non-null subgame perfect equilibria in which
R > 0 (and X > 0 on the equilibrium path). The simultaneous-move game
G0 also has a null equilibrium, so again we study non-null Nash equilibria
in which the auctioneer plays R > 0.

In the next two subsections, we present an additional condition which
ensures that G� has a non-null subgame perfect equilibrium and that such
an equilibrium must be unique.

3.1 Backwards induction: Stage 2

We will �nd it convenient to use G (R) to denote the second-stage subgame
when the auctioneer plays R in the �rst stage. Note that payo¤s are given
by (2), so that, if R > 0, this is a rent-seeking contest with proportional
contest success function6, rent R and cost functions Ci. We can exploit
the aggregative nature of such games7 in analyzing their equilibria. Rather
than study �xed points of (n-dimensional) best response maps directly, we
use the techniques described in [4].

In that paper, it was shown that, for any seller i and any X > 0, there is
a unique strategy xi � 0 such that seller i plays xi in any Nash equilibrium
of G (R) in which the sum of strategies is X. For any i this allows us to
de�ne a share function which maps any X > 0 to �i = xi=X. We write
si (X;R) for the value of this share function and note that si (X;R) = �i
if and only if �iX is a best response by seller i to any strategy pro�le of
the other sellers which satis�es

P
j 6=i xj = (1� �i)X. Since �i is a concave

function of xi, the �rst-order conditions are necessary and su¢ cient for xi
6With an appropriate change of variables if necessary, G (R) is strategically equivalent

to a generalized Tullock contest with unit average cost and logistic contest success function
[3].

7The payo¤ of player i is a function only of xi and X.
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to be a best response in G (R). These conditions imply that si (X;R) = �i
if and only if

LM (�i; X;R) = (1� �i)
R

X
� C 0i (�iX) , (4)

with strict inequality if �i > 0.
The construction of the value of si for given X and R is illustrated in

Figure 1. In this �gure, LM and C 0i, considered as functions of �i, are
drawn as solid lines. Since LM is strictly decreasing and C 0i non-decreasing
in �i the lines can cross at most once. If they do not cross, the LM line
must lie below the C 0i line, in which case the �rst order conditions imply
si (X;R) = 0. This shows that the share function is well-de�ned for all
X;R > 0. Furthermore, an increase in X pivots LM down and C 0i up
(under Assumption A1), from which we can deduce that the share function
is decreasing in X where positive. Figure 1 also makes the remaining
assertions in the following lemma plausible. For a formal proof see [3].

Figure 1: Share functions in the market share game for R and R0 > R.

Lemma 3.1 Suppose Assumption A1 is satis�ed and i 2 IS. For any
R > 0, there is a continuous share function si (X;R) : R2++ ! [0; 1], where
si

1. is strictly decreasing where positive,
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2. approaches unity as X ! 0, and

3. is eventually equal to zero or approaches zero as X !1.

Share functions allow us to study equilibria using the observation that
there is an equilibrium in G (R) with aggregate supply X if and only if

S (X;R) =
X
j2IS

sj (X;R) = 1, (5)

in which case the equilibrium strategy pro�le is (Xs1 (X;R) ; : : : ; Xsn (X;R)).
It follows from the lemma that S (X;R) is continuous, exceeds unity for
small enough X, approaches or is equal to zero for large enough X and is
strictly decreasing where positive. This implies that (5) holds for exactly
one X and this entails a unique equilibrium.

Lemma 3.2 If Assumption A1 is satis�ed, then G (R) has a unique equi-
librium for any R > 0.

We write X (R) for the equilibrium value of X in G (R). To study
equilibria of G�, we will need to analyze how X (R) varies with R. Firstly, we
observe that X (R) is continuous in R > 0. This follows from a compactness
argument, using the fact that S (X (R) ;R) = 1 along with properties of S
inherited from those of individual share functions set out in Lemma 3.1.
Furthermore, LM is strictly increasing in R and decreasing in �i, whereas
C 0i is constant in R and Assumption A1 implies that it is non-decreasing
in �i. It follows that si(X;R) increases with R for �xed X, strictly if
si 2 (0; 1). This is illustrated in Figure 1, in which we display LM when
R is increased to R0 as a dashed line. We deduce that, for any X > 0,
the aggregate share function S(X;R) increases with R where it is positive.
Since S (X (R) ;R) = 1, we may use Lemma 3.1 to conclude that X (R)
increases with R. In the appendix, we extend this result to show that this
increase is no faster than R and that X (R) is not bounded above. These
observations are summarized in the following proposition8.

Proposition 3.3 If Assumption A1 is satis�ed, X (R) is continuous in
R > 0, unbounded above, strictly increasing and the dissipation ratio � (R) =
X (R) =R is non-increasing in R > 0.

8We believe that the observation that the dissipation ratio is decreasing in the rent is
a new result.
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3.2 Backwards induction: Stage 1

Having characterized the equilibrium in second-stage subgames, we now turn
to the �rst stage, in which the auctioneer chooses R to maximize � (X;R),
where the equilibrium in G (R) implies thatX = X (R). Since X (0) = 0 and
� � 0, the auctioneer can always maximize her payo¤ by choosing R = 0.
This leads to the null equilibrium of G� in which all sellers produce zero
output. However, if there is also an R > 0 satisfying R = f (X (R)), where
f (X) is the revenue function: f (X) = Xp (X), this too will achieve the
maximum and G� will have a non-null subgame perfect equilibrium. We
can use Proposition 3.3 to derive the conditions under which there is such
an R and show that it is unique. This leads to the following theorem
characterizing equilibria of G�. The proof is in the appendix.

Theorem 3.4 If Assumptions A1 and A2 are satis�ed and G� has a non-
null subgame perfect equilibrium this equilibrium is unique and the auctioneer

chooses ~R = f
�
~X
�
, where ~X = X

�
~R
�
. Such an equilibrium exists if and

only if X
j2IS

�
1�

C 0j (0)

p (0)

�
> 1. (6)

If the inequality in the theorem fails, there is only the null equilibrium.
Note that (6) is satis�ed if p (0) is in�nite (for example, isoelastic demand)
irrespective of sellers�cost functions. This is also true if marginal cost falls
to zero at zero output for at least one seller. However, the theorem does
not imply that pro�table trade is always realized. If minimal marginal cost
is less than the choke-o¤ price for some sellers: C 0i (0) < p (0), production
is pro�table for such sellers. But, this does not imply that (6) is neces-
sarily satis�ed: strategic factors may prevent gains from trade from being
exploited.

3.3 Simultaneous moves

Now consider the game G0 in which the auctioneer and sellers play simulta-
neously. In a Nash equilibrium of G0, seller i chooses output x̂i to maximize
�i, given by (2), where R is the revenue chosen by the auctioneer. It is

straightforward to con�rm that x̂i = si
�
X̂;R

�
X̂, where X̂ =

P
j2IS x̂j and

we can interpret X̂ as a collective best response by sellers to the auctioneer�s
strategy. The auctioneer�s best response to an aggregate output of X̂ by

sellers maximizes �
�
X̂; R

�
with respect to R. Thus, X̂ = X

�
R̂
�
where

R̂ 2 argmaxR �
�
X̂; R

�
and hence R̂ = f

�
X
�
R̂
��
. These conditions are

equivalent to those determining outputs and revenue on the equilibrium path
of G�. We conclude that G0 is outcome equivalent to G� in the sense that,
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in equilibrium, the strategies chosen by sellers in G0 are the same as those
on the equilibrium path of G�. Theorem 3.4 has the following corollary.

Corollary 3.5 If Assumptions A1 and A2 are satis�ed, G0 has a unique
non-autarkic equilibrium if and only if (6) holds.

4 The many-buyer limit of bilateral oligopoly

In this section we consider the equilibria of bilateral oligopoly as m ! 1.
To illustrate our results, we �rst return to Example 2 and calculate the
equilibrium of the market-share game.

Example 2 revisited. Payo¤s in the second-stage subgame G (R) of a
market-share game in which costs are as in Example 2 and the auctioneer
chooses R in the �rst stage are

x

X
R� 1

2
x2 � 
x.

This means that X (R), the equilibrium value of X in G (R), satis�es

R = [X (R)]2 + 2
X (R) :

If preferences also agree with those in Example 2, inverse demand is p (X) =

� �X. Setting ~R equal to X
�
~R
�
p
�
X
�
~R
��

and solving for X
�
~R
�
gives

X
�
~R
�
=
� � 2

2

,

which is the equilibrium aggregate supply in the market-share game.

Comparing this with the original example, we observe that, as m!1,
the limit of the equilibrium aggregate output in bilateral oligopoly ap-

proaches X
�
~R
�
, the equilibrium output in the market share game. This is

a general result and to show this, we start by recalling from our discussion in
Section 2 that, in bilateral oligopoly, sellers�supply decisions are aggregated
to X =

P
j2IS xj and buyers�bids are aggregated to B =

P
j2IBm bj=m.

The payo¤ to seller i is then given by (xi=X)B�Ci (xi), and the �rst-order
conditions can be written (in terms of shares �i = xi=X) as L (�i; X;B) �
C 0i (�iX) with equality if �i > 0, where L (�i; X;B) = (1� �i)B=X. Re-
calling the analysis of condition (4) in our discussion of the market share
game, we can conclude that the aggregate supply of the sellers in a bilateral
oligopoly equilibrium in which the aggregate bid of the buyers is B > 0
will be X (B), with the properties presented in Proposition 3.3 when R is
replaced by B. This is the �rst similarity with the market share game, and
indicates equivalence in seller behavior in bilateral oligopoly with that in
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subgames of the market share game. Next we go on to explore the buyers�
behavior and show that, collectively, it mimics that of the auctioneer when
the number of buyers is many.

In order to deduce this we appeal to a characterization of equilibrium
in bilateral oligopoly from [6]. In particular, aggregate demand that is
consistent with a Nash equilibrium in which the price is p can be represented
by a strategic analogue of the competitive demand function. Speci�cally,
under binormality of buyers preferences9 it was shown that, for any p > 0
there is a unique value of the aggregate bid of buyers in an equilibrium of any
bilateral oligopoly game with buyer set IBm. The ratio of this aggregate bid
to price de�nes the strategic demand function Dm (p) which can be shown to
be continuous, strictly decreasing in p and unbounded as p! 0 [6, Lemma
5.1]. Therefore, Dm is invertible to a continuous decreasing function which
we denote pBm (X). If the aggregate supply from the sellers is X, the price
that will emerge in the market given the buyers� optimal actions (taking
into account all the strategic e¤ects) is pBm (X). It also follows from these
observations that pBm satis�es Assumption A2.

As buyers become more numerous, their individual market power di-
minishes and we might expect their behavior to approximate price taking.
The following lemma, proved in the appendix, captures this at the level of
aggregates.

Lemma 4.1 Suppose all buyers� preferences are binormal. Then as m !
1,

pBm(X)! p(X)

pointwise. Moreover, on any compact subset of R++, this convergence is
uniform.

It follows from the observations in the preceding paragraphs that, in an
equilibrium of Em in which the aggregate bid is B, the strategic price will
be pBm (X (B)). Since the price is constructed as the ratio of aggregate
bid to aggregate supply, it is straightforward to see that there is a Nash
equilibrium in bilateral oligopoly with aggregate bid B > 0 if and only if10

B

X (B) = p
Bm (X (B)) . (7)

9Binormality of preferences requires that the marginal rate of substitution increases
with moves to the north-west: if @i (y1; y2) represents the marginal rate of substitution,
y1 � y01; y2 � y02 ) @i (y) � @i (y

0) where the �nal inequality is strict if y1 < y01 and
y2 > 0.
10 In [6] it was shown that equilibria in bilateral oligopoly are in 1�1 correspondence

with intersections of the strategic demand curve with a similar strategic supply curve con-
structed for sellers. Equation (7) states the same result in a form more readily applicable
in the current context.
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We may apply Theorem 3.4 to deduce that, providedX
j2IS

[1� C 0j (0) =pBm (0)] > 1, (8)

there will be a unique ~Bm > 0 which satis�es (7). It follows from Lemma 4.1
that, if (6) holds, there will be a positive integer �m such that (8) is satis�ed
for all m � �m. Hence, ~Bm is well-de�ned when buyers are su¢ ciently
numerous: a non-autarkic bilateral oligopoly equilibrium will exist in Em
and for all larger economies. In the appendix, we examine the sequencen
~Bm
o1
m= �m

and prove the remaining assertions in the following theorem.

Theorem 4.2 If Assumption A1 is satis�ed, (6) holds and the preferences
of all buyers are binormal, there is a non-autarkic equilibrium of Em for all
large enough m. Furthermore, as m!1, strategic price in this equilibrium
converges to the price ~p on the equilibrium path of G�, each seller�s output
converges to their output on the same equilibrium path and the consumption
choices of each buyer type approach those under price-taking behavior with
price ~p.

This key result demonstrates that the behavior of sellers in the market-
share game can be seen as a good approximation to bilateral oligopoly with
many buyers and that buyers approximately play the price-taking role as-
signed to them in the market share game. Since we also showed in the
previous section that outcomes at the equilibrium of G0 and on the equilib-
rium path of G� are identical, we may conclude that G0 may also be viewed
as an approximation to Em when m is large.

5 Cournot and market share games

In this section, we compare the outputs in Cournot and market share games
and use the results to investigate the relationship between bilateral oligopoly
with many buyers and Cournot competition. It will prove convenient to
con�ne our attention to to the case in which demand is continuously di¤er-
entiable where positive.

5.1 Analyzing the Cournot game

Consider the game G+, in which the auctioneer moves second. In any
second-stage subgame in which aggregate output in the �rst stage is X, the
auctioneer�s best response is to choose R = Xp (X). In a subgame perfect
equilibrium, the �rst-stage game becomes a Cournot game with payo¤s given
by (2) with Xp (X) in place of R. We will write GC for this Cournot
game. It is well known (see, for instance, Example 2 in Novshek [13]) that
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the assumptions we have made so far are not su¢ ciently strong to ensure
that a Cournot equilibrium exists. Rather than strengthen these conditions
(and weaken our conclusions), we will maintain our assumptions and con�ne
attention to those problems where a Cournot equilibrium does exist. Once
again, we exploit the aggregative properties of the game.

The necessary �rst-order condition for xi to be a best response to x�i in
GC is

@�i
@xi

= p(X) + xip
0(X)� C 0i(xi) � 0;

with equality if xi > 0. Re-writing these conditions in terms of market
share �i = xi=X gives

LC (�i; X) =

�
1� �i

� (X)

�
p (X) � C 0i (�iX) , (9)

with equality if �i > 0, where � (X) = �p (X) =Xp0 (X) is the elasticity of
demand.

Since LC is strictly decreasing and C 0i (�iX) non-decreasing in �i, for all
X > 0, there is a unique �i which satis�es these conditions if and only if LC

is not greater than C 0i at �i = 1, that is, if�
1� 1

� (X)

�
p (X) � C 0i (X) . (10)

If we let Xi denote the (non-empty) set of X satisfying (10), there is a
function sCi : Xi ! [0; 1], where, for any X 2 Xi, sCi (X) is the unique �i
satisfying (9). It follows that, if ~xC is a Cournot equilibrium and ~XC =P
j2IS ~x

C
j , then ~X

C 2
T
j2IS Xj and ~xCi = ~XC = sCi

�
~XC
�
for all i 2 IS. Note

that this implies X
j2IS

sCj

�
~XC
�
= 1.

These facts will be used in the sequel to compare equilibria in the market-
share game with Cournot equilibria. Note, however, that sCi is not a share
function, since, although necessary, the �rst-order conditions are not su¢ -
cient for best responses. Put another way,

P
j2IS s

C
j (X) = 1 does not imply

that X is a Cournot equilibrium level of output. Furthermore, without fur-
ther restrictions on the demand function, sCi need not be strictly decreasing
where positive. Nevertheless, by comparing sCi (X) and si (X;R) we can
explore the relationship between GC and G (R), and by extension, between
G+ and G�.

5.2 Unit elasticity

It is an immediate consequence of the expressions for LM and LC (see (4)
and (9) respectively) that, if � (X) = 1 and R = Xp (X), then LC (�i; X) =
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LM (�i; X;R) for all �i 2 [0; 1]. Consequently, if GC has an equilibrium
with aggregate output ~XC, where �

�
~XC
�
= 1 and R = ~XCp

�
~XC
�
, then

si

�
~XC;R

�
= sCi

�
~XC
�
and therefore

X
j2IS

sj

�
~XC;R

�
=
X
j2IS

sCj

�
~XC
�
= 1,

which implies that ~XC is the equilibrium value of X in G (R). Hence, ~XC =
X (R), where R = X (R) p (X (R)). It follows that G� has an equilibrium in
which the auctioneer chooses R = ~XCp

�
~XC
�
in the �rst stage and seller i

chooses si
�
~XC;R

�
~XC = sCi

�
~XC
�
~XC = ~xCi on the equilibrium path. This

proves the following result.

Proposition 5.1 Suppose Assumption A1 holds, demand is di¤erentiable
where positive and G+ has an equilibrium at which elasticity of demand is
unity. Then G� has a non-autarkic equilibrium at which outputs of each
seller are equal on the equilibrium paths of G� and G+.

Note that it follows from the proposition that aggregate demand and
therefore price agree on the equilibrium paths.

We may also conclude from the output equivalence of G� and G0, es-
tablished previously, that, under the suppositions of Proposition 5.1, G0 has
a non-autarkic equilibrium in which the outputs of all sellers are equal to
those on the equilibrium path G+.

If all buyer types have Cobb-Douglas preferences, not only does demand
have unit elasticity (and is strictly concave), but standard existence results
imply that a Cournot equilibrium exists and is unique (see Szidarovsky and
Yakowitz [18]). Moreover, Assumption A2 holds. This leads to the follow-
ing corollary.

Corollary 5.2 Suppose Assumption A1 holds and all buyer types have
Cobb-Douglas preferences, then G� and G+ have subgame perfect equilibria
and G0 has a non-autarkic Nash equilibrium in which equilibrium outputs
are the same in all three games.

5.3 A comparison of oligopoly models

When elasticity di¤ers from unity, we can use our share function construc-
tions to order the outputs in the Cournot and market share games at the
aggregate level. The following proposition summarizes the result, proved
in the appendix.
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Proposition 5.3 Suppose Assumptions A1 and A2 hold, (6) is satis�ed
and competitive demand is di¤erentiable where positive. If the aggregate
output of sellers in the unique non-autarkic subgame perfect equilibrium of
G� is denoted by ~X, and there is a Cournot equilibrium with aggregate output
~XC, then

�
�
~XC
�
> [<]1, ~X < [>] ~XC. (11)

In contrast to the case of unit elasticity, this result holds purely at the
aggregate level. There are demand functions and sets of non-identical cost
functions satisfying the suppositions of the proposition for which GC has
an equilibrium with �

�
~XC
�
> 1, but in which there are individual sellers

whose output is higher in G� than G+. This possibility arises because, even
though si (X;R) < sCi (X) when R takes the equilibrium value in G�, the
fact that si is decreasing in X prevents us from ruling out the possibility
that ~xi = ~Xsi( ~X; ~R) > ~XCsi( ~X

C) = ~xCi .
The observations made in Subsection 3.3 show that comparisons between

G+ and G0 run the same way.

Corollary 5.4 Under the conditions of Proposition 5.3, (11) holds, where
~X now denotes the aggregate output of sellers in the unique Nash equilibrium
of G0.

To see the intuition behind Proposition 5.3 and Corollary 5.4, suppose
there is an equilibrium in the market share game in which total revenue is
R. When making supply decisions in this game, sellers consider only the
e¤ect of changes in their supply on their share of this total revenue, for they
see its magnitude as �xed at the value ~R. In seeking their optimal choice,
each seller equates the marginal bene�t of extra supply to marginal cost
(keeping the supply decisions of others �xed), the marginal bene�t being
the e¤ect of a change in supply on their share of the revenue. If we were
to impose the rules of the game G+ at the equilibrium of G�, sellers would
now consider the actions of the auctioneer who is determining the revenue
R at the second stage. As such, they must take into account that their
supply decisions in�uence not only their share of the revenue but also the
size of the total revenue to be shared amongst all sellers. When elasticity is
unity, total revenue is �xed on the margin leading to identical outcomes in
G+ and G�. When elasticity is less than one, the direct marginal bene�t of
a small increase in supply is o¤set by a reduction in total revenue, leading to
a lower total equilibrium output in G+ than G�. Similarly, when elasticity
exceeds one, an increase in supply increases total revenue and this reverses
the ordering of total output.
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5.4 Oligopoly with many buyers

In this subsection, we combine the observation in Section 4, that quantity
competition in bilateral oligopoly with many buyers can be approximated
by the games G� (or G0), with the comparison of outcomes in G� and G+
conducted in the preceding subsections. This will allow us to show that the
results in Examples 1 and 2 are typical rather than exceptional. We �rst
apply Theorem 4.2 and Proposition 5.1 to deduce the following result.

Corollary 5.5 If, under the assumptions of Theorem 4.2, market demand
is di¤erentiable where positive and the Cournot game has an equilibrium
at which elasticity of demand is one, then Em has a unique non-autarkic
equilibrium for all large enough m in which the equilibrium outputs of all
sellers approach those at the Cournot equilibrium.

A fortiori, this conclusion holds if cost functions satisfy Assumption
A1 and all buyers have Cobb-Douglas preferences. The corollary suggests
that Cournot oligopoly can then be viewed as an approximation of bilateral
oligopoly with many buyers and bilateral oligopoly can provide a strategic
foundation for Cournot competition under these circumstances.

When a Cournot equilibrium exists, but the equilibrium elasticity di¤ers
from unity, the best we can do is to use Theorem 4.2 and Proposition 5.3 to
provide an ordering of aggregate outputs.

Corollary 5.6 Suppose the assumptions of Theorem 4.2 are satis�ed, mar-
ket demand is di¤erentiable where positive and the Cournot game has an

equilibrium with aggregate output ~XC at which elasticity of demand is �
�
~XC
�
>

[<]1. Then there is a positive integer M such that Em has a unique non-
autarkic equilibrium in which aggregate output ~Xm satis�es ~Xm < [>] ~XC

for all m �M .

In this case, bilateral oligopoly does not provide a useful foundation for
Cournot competition.

6 Conclusion

This paper introduced a model of quantity competition that relaxes the
implicit timing assumptions in Cournot�s model of competition, that the
market clears (in the hands of an auctioneer) after sellers have comitted to
their supply choices - the market share game. We have shown that equilibria
in bilateral oligopoly with many buyers can be approximated by those in the
market share game. Yet, there are inherent di¤erences between equilibria
in the market share game and Cournot equilibria. These results, a fortiori,
have two implications:
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1. The timing implicit in Cournot�s framework is crucial, since the mar-
ket share game, which has alternative timing assumptions, generally
has di¤erent equilibria. This makes market structure important when
determining which environments are suitable for analysis by Cournot�s
model. Moreover, in those environments where Cournot�s model is not
suitable an alternative is provided �the market share game �that has
a strategic foundation within the bilateral oligopoly framework.

2. Cournot competition is not generally a good approximation to bilateral
oligopoly, even when the number of buyers in the latter is large. Put
another way, bilateral oligopoly doesn�t provide a strategic foundation
for Cournot competition.

We leave discovering the appropriate fully strategic model that will pro-
vide this foundation, which is not simply a two-stage respeci�cation of bi-
lateral oligopoly, as the subject of future research.

A Appendix

Proof of Proposition 3.3. For any X > 0, the share function si(X;R)
of seller i, has a �nite limit as R ! 1 and it is a straightforward conse-
quence of the �rst-order conditions that this limit is unity. It follows that
S (X;R) exceeds one for all large enough R and therefore X (R) > X, so X
is unbounded.

The proof that dissipation is non-increasing exploits the fact that, for
�xed � > 0, the share function of seller i is non-increasing in R: if R0 > R >
0, then si(�R;R) � si(�R0;R0). To see this, note that �i = si(�R;R) if and
only if LM (�i; �R;R) � C 0i (�i�R) with equality if �i > 0, where, from (4),
we have LM (�i; �R;R) = (1� �i) �. For �xed �i 2 [0; 1], an increase in R
leaves LM unchanged and does not decrease C 0i (�i�R), by Assumption A1.
Hence, si(�R;R) does not increase. (Note that this holds even if the share
function falls to zero.)

Since X
j2IS

sj(R� (R) ;R) = 1 (12)

an increase from R to R0 gives
P
j2IS sj(R

0 � (R) ;R0) � 1. Since (12)
holds if R is replaced by R0 and si(X;R) is non-increasing in R, we have
� (R0) � � (R).

Proof of Theorem 3.4. The condition for R > 0 to maximize the
auctioneer�s payo¤ can be re-written:

R

X (R) = p (X (R)) (13)
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and we will show that the left hand side of (13) exceeds the right for all large
enough R and, subject to a certain extra condition, this inequality reverses
for small R. Continuity will allow us to deduce the existence of positive R
satisfying (13).

Firstly, note that Proposition 3.3 implies that the left-hand side of (13)
is either unbounded or has a positive limit as R ! 1. The proposition
also asserts that X (R) ! 1 as R ! 1, which, under Assumption A2,
implies that the right-hand side approaches or is equal to zero in this limit.
These two observations mean that R=X (R) > p (X (R)) for all large enough
R. To examine the limit R ! 0, we �rst observe that, since sellers can
always choose no output and receive zero payo¤, equilibrium payo¤s must
be non-negative. It follows that each seller�s costs in equilibrium cannot
exceed R and therefore that each seller�s equilibrium strategy approaches
zero as R ! 0. We conclude that X (R) ! 0 as R ! 0 and, if we write
p (0) for limX!0 p (X) (and take p (0) = +1 if p is unbounded), we see that
the right-hand side of (13) approaches p (0) as R ! 0. To calculate the
limit of the left-hand side, we note that for a given R > 0, the �rst-order
conditions and (4) give, for any i,

[1� si (X (R) ;R)]
R

X (R) � C
0
i [si (X (R) ;R)X (R)] ,

with equality if si (X (R) ;R) > 0. However, for all small enough R > 0
every share function is positive, by Lemma 3.1, so equality holds for all i.
Summing over i, dividing by n� 1 and using S (X (R) ;R) = 1 yields

R

X (R) =
1

n� 1
X
j2IS

C 0j (X (R) sj (X (R) ;R)) .

Since X (R) ! 0 as R ! 0, it follows from Lemma 3.1 that R=X (R) !P
j2IS C

0
j (0) = (n� 1). Provided this limit is less than p (0) it follows that

R=X (R) < p (X (R)) for all small enough R.
We have shown that, provided p (0) is large enough, R = X (R) p (X (R))

for some R > 0, by continuity. To see that this value is unique, note that
Assumption A2 implies that p (X) is strictly decreasing in X and it follows
from Proposition 3.3 (in particular the fact that X (R) is increasing in R)
that the right-hand side of (13) is strictly decreasing in R. This proposition
also implies that the left-hand side is non-decreasing, so (13) can have at
most one solution.

Proof of Lemma 4.1. Consider a game of bilateral oligopoly in which the
set of buyers is IBm. A slight modi�cation of the arguments in [6] show that,
under the assumptions of the lemma, there is a share function smi (B; p) for
buyers of type i 2 IB such that, in any non-autarkic equilibrium of this game
with strategic price p, every buyer of type i 2 IB bids bmi = Bmsmi (Bm; p),
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where the aggregate o¤er Bm satis�esX
j2IBm

smj (B
m; p)

m
=
X
j2IB

smj (B
m; p) = 1.

Furthermore, if @i (y1; y2) denotes the marginal rate of substitution with y1
units of the good and y2 units of money and if @i (0; ei) � p, then smi (B; p) =
0 for all B > 0, whereas, if @i (0; ei) > p, then smi (B; p) is the unique
� 2 [0; 1] satisfying

@i

�
�B

p
; ei � �B

�
=
�
1� �

m

��1
p. (14)

Since Bm 2
h
0;
P
j2IB ej

i
and smi (B

m; p) 2 [0; 1] for all m, there is a
subsequence on which Bm ! B and smi (B

m; p) converges to �i (p) satisfyingP
j2IB �j (p) as m ! 1. Taking limits in (14), using the continuity of @i

shows that �i (p) = 0 if @i (0; ei) � p and satis�es

@i

�
B�i (p)

p
; ei �B�i (p)

�
= p (15)

otherwise. Since share functions sum to one,
P
j2IB �j (p) = 1. Together

with (15), this uniquely de�nes B and �i (p) for i 2 IB, which in turn shows
these are the limits of the sequences fBmg and fsmi (Bm; p)g respectively.
It follows from (15) that, if xi denotes the competitive demand of buyers of
type i at price p, we have B�i (p) = pxi. Writing Dm (p) = Bm=p for the
strategic demand of buyers at price p, we have

Dm (p) = Bm

p

X
j2IB

smj (B
m; p)! B

p

X
j2IB

�j (p) = D (p) ,

where D (p) =
P
j2IB xj is the competitive demand at price p. Under

binormality and Assumptions A1 and A2, Dm and D are continuous and
strictly decreasing, so we can invert these functions to deduce pointwise
convergence of inverse demand. We can extend this to uniform convergence
on compact sets by showing that convergence is monotone and applying
Dini�s theorem.

We can prove that convergence is monotone by �rst showing that smi (B; p)
is non-decreasing in m. Note that a rise in � increases �B=p and decreases
ei��B and binormality implies that the left hand side of (14) is decreasing
in �, whereas the right hand side of (14) is increasing in �. Furthermore,
a rise in m decreases the right hand side of (14) and therefore the solu-
tion to (14) increases. Hence, smi (B; p) < s

m+1
i (B; p) if @i (0; ei) > p and

smi (B; p) = s
m+1
i (B; p) = 0 if @i (0; ei) � p. It follows thatX

j2IB
sm+1j (Bm; p) �

X
j2IB

smj (B
m; p) = 1.
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Since it follows from the argument in [6] that
P
j2IB s

m+1
j (B; p) is decreasing

in B where positive and is equal to 1 at B = Bm+1, we deduce that Bm+1 �
Bm and therefore Dm+1 (p) � Dm (p). By inverting these functions we can
conclude that inverse demand functions are also ordered by m.

Proof of Theorem 4.2. The sequence
n
~Bm
o1
m= �m

satis�es 0 � ~Bm �P
j2IB ej for allm � �m, which means that it will have at least one accumula-

tion point, which we write ~B. Continuity of X (Proposition 3.3) implies that
X
�
~Bm
�
! X

�
~B
�
asm!1. Furthermore, the sequence

n
X
�
~Bm
�o1

m= �m
is contained in a compact set, so we may exploit uniformity of convergence

from Lemma 4.1 to deduce that pBm
�
X
�
~Bm
��
! p

�
X
�
~B
��
. Applying

this to (7) shows that ~B = f
�
X
�
~B
��
, where f is the revenue function

f (X) = Xp (X). It follows that ~B is the aggregate revenue in a sub-
game perfect equilibrium of G�. We have noted that the assumptions of
the theorem imply that p satis�es Assumption A2, which means we can
apply Theorem 3.4 to deduce that ~B is unique. This shows that ~Bm ! ~B
as m ! 1 and that ~B is the equilibrium aggregate revenue in the market
share game.

Continuity of X allows us to deduce that ~Xm, the aggregate output
in this sequence of equilibria, converges to ~X, the aggregate output in the

equilibrium of the market share game: ~Xm = X
�
~Bm
�
! X

�
~B
�
= ~X as

m!1. This also implies that strategic price ~pm converges to ~p = p
�
~X
�

in the same limit.
Examining the payo¤s of sellers for a given aggregate bid B in (1) shows

that sellers in Em can be viewed as competing in a contest with prize ~Bm.
We can use the analysis in Subsection 3.1 to deduce that the equilibrium

output of seller i is ~xmi = ~Xmsi

�
~Xm; ~Bm

�
, where si is the share function of

seller i. Continuity of si (Lemma 3.1) implies that ~xmi ! ~Xsi

�
~X; ~B

�
= ~xi,

the output of seller i on the equilibrium path of G�.
If buyers of type i bid ~bmi in the non-autarkic equilibrium of Em, then

ui

 
~bmi
~Xm

~Bm
; ei � ~bmi

!
� ui

 
mbi ~X

m

m ~Bm � ~bmi + bi
; ei � bi

!

for all bi 2 [0; ei]. Since ~bmi 2 [0; ei] for all m � m, the sequence
n
~bmi

o1
m=m

has a subsequence convergent to ~bi, say. Taking the limit in this inequality
gives

ui

 
~bi
~p
; ei � ~bi

!
� ui

�
bi
~p
; ei � bi

�
,
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for all bi 2 [0; ei]. This says that ~bi=~p is the expenditure on the consumption
good of a price-taking consumer with utility function ui and facing price ~p.
Since this makes ~bi unique, we conclude that ~bmi ! ~bi as m!1.

We now turn to the proof of Proposition 5.3. The proof uses the follow-
ing lemma.

Lemma A.1 Suppose that Assumption A1 holds, competitive demand is
di¤erentiable where positive and there is an equilibrium of GC with aggregate
supply ~XC, then

R � [�]f
�
~XC
�
and �

�
~XC
�
> [<]1) X (R) < [>] ~XC, (16)

where f (X) = Xp (X).

Proof. Suppose R;X > 0 satisfy R � Xp (X) and � (X) > 1. It follows
from (4) and (9) that L (�i; X;R) � LC (�i; X) with strict inequality unless
�i = 0 and R = Xp (X). Since the right-hand sides of the �rst-order
conditions (marginal costs) are identical in both games, we can deduce that
si(X;R) � sCi (X) for all X 2 X and the inequality is strict if sCi (X) > 0 or
R < Xp (X). This is illustrated in Figure 2, which displays the construction
of these functions in the games G (R) and GC.

We can apply this deduction to a comparison of equilibria in GC and
G (R), so suppose GC has an equilibrium with aggregate supply ~XC. If

R � ~XCp
�
~XC
�
and �

�
~XC
�
> 1, we can sum our result over all sellers to

obtain X
j2IS

sj( ~X
C;R) <

X
j2IS

sCj ( ~X
C) = 1.

Since
P
j2IS sj(X;R) is continuous and strictly decreasing in X where pos-

itive, and
P
j2IS sj(X (R);R) = 1, we can deduce that X (R) < ~XC.

The proof when the inequalities are reversed is similar.

Proof of Proposition 5.3. We consider the case in which the assumptions

of the proposition hold and �
�
~XC
�
> 1. Applying Lemma A.1 with R =

f
�
~XC
�
allows us to deduce that X

�
f
�
~XC
��
< ~XC and therefore

X
�
f
�
~XC
��

f
�
~XC
� <

~XC

f
�
~XC
� = 1

p
�
~XC
� . (17)

Now, using ~X to denote the aggregate output in the non-null equilibrium of

G� and putting ~R = f
�
~X
�
, we have

1

p
�
X
�
~R
�� = X

�
~R
�

f
�
X
�
~R
�� = X

�
~R
�

~R
. (18)
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Figure 2: Comparing share functions in Cournot competition (dashed) and
the market-share game (solid) when R � Xp(X) and �(X) > 1.

We will prove that ~X < ~XC by contradiction, so note that if we had ~X =

X
�
~R
�
� ~XC, the fact that demand is decreasing by Assumption A2 would

imply that the right-hand side of (17) would not exceed the left-hand side
of (18). But this implies

X
�
f
�
~XC
��

f
�
~XC
� <

X
�
~R
�

~R

and the fact that X (R) =R is non-increasing (Proposition 3.3) implies f
�
~XC
�
>

~R. A further application of Lemma A.1 would yield X ( ~R) < ~XC, the
claimed contradiction. A similar argument allows us to deduce that �( ~XC) <
1 implies ~X = X ( ~R) > ~XC.
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