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Abstract

The evolution of monetary policy in the U.S. is examined based
on structural dynamic factor models. I extend the current literature
which questions the stability of the monetary transmission mechanism,
by proposing and studying time-varying parameters factor-augmented
vector autoregressions (TVP-FAVAR), which allow for fast and effi-
cient inference based on hundreds of explanatory variables. Different
specifications are compared where the factor loadings, VAR coeffi-
cients and error covariances, or combinations of those, may change
gradually in every period or be subject to small breaks. The model is
applied to 157 post-World War II U.S. quarterly macroeconomic vari-
ables. The results clearly suggest that the propagation of the mone-
tary and non-monetary (exogenous) shocks has altered its behavior,
and specifically in a fashion which supports smooth evolution rather
than abrupt change. The most notable changes were in the responses
of real activity measures, prices and monetary aggregates, while other
key indicators of the economy remained relatively unaffected.
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1 Introduction

A challenge of great importance in modern macroeconomics is to identify
whether the effect of monetary policy on the economy has changed over the
years and to what extent. Understanding the evolution of the economy over
the last 50 years and recognizing the degree of effectiveness of monetary
policy nowadays, is of immediate interest to policy makers. Two classes of
econometric models have emerged as the dominant approaches for determin-
ing the impacts of (mainly U.S.) monetary policy over time. The first one
is based on estimating identified vector autoregressive (VAR) models and ei-
ther comparing the impulse responses on several sub-samples of post-WW II
data, or testing for structural change. In this context, Boivin and Giannoni
(2006b) and Stock and Watson (2002) provide evidence of a more aggressive
and stabilizing monetary policy over the recent past. A second approach
is based on structural VAR or DSGE models with time-varying parameters
(regression coefficients and/or volatilities), which has the implication that
the mechanism that generates the shocks is also time-varying. Cogley and
Sargent (2001, 2005), Primiceri (2005), Sims and Zha (2006) and Koop et al.
(2009) are all studies that allow the parameters and shocks to vary either on
every time period or to be subject to structural change in some periods.

Common place of these papers is that they attempt to model the effects
of monetary policy in the economy as a whole by using only a restricted set of
variables. While the early VAR literature relied on usually three fundamental
quantities (as suggested by small theoretical models) it is currently recognized
that modeling using an extended information set has crucial implications.
As Stock and Watson (2005) and Bernanke et al. (2005) point out, when
extracting the structural shocks from the innovations of a VAR it is important
to make sure that there is no omitted variable bias. Since during the decision
process there are hundreds of variables available to economic agents and
policy makers, especially Central Banks (Bernanke and Boivin (2003)), it is
expected that the innovations of a VAR with just three variables will not
span the space of structural disturbances. This lack of information has been
identified as the source of the ’price puzzle’ (Sims, 1992), which for example
lead Boivin and Giannoni (2006b) to consider commodity price inflation as
an additional variable in their VAR, even though it was not justified by the
theoretical model.

This paper adopts the structural dynamic factor framework of Stock and
Watson (2005) and Bernanke et al. (2005) as the starting point, however,
for the purpose of modeling the evolution of the monetary policy in the
US, all model parameters are evolving over time as well. This assumption
subsequently implies that the transmission of monetary and non-monetary
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shocks also varies in each time period. In essence, the dynamic factor model
is a means of summarizing information in a large data-set - in the order of
some hundreds of variables - using just few - usually less than 10 - latent
variables called factors. These factors usually are the first few principal
components of the large data-set, but also different methods for estimating
latent factors have been proposed and used successfully the last ten years.
Among the vast literature, notable studies include Bai (2003), Boivin and Ng
(2005), Giannone et al. (2008)and Boivin and Giannoni (2006a). The recent
implementations of Stock and Watson (2005) and Bernanke et al. (2005) have
the advantage of treating the dynamic factor model as a direct generalization
of large-scale structural VAR’s, without though suffering from the curse of
dimensionality problem.

Del Negro and Otrock (2008) is the first modeling attempt to use factors
in a time-varying parameters setting. They assume that the latent factors
have to be estimated from the data, using simulation methods to approximate
their generating distribution. In that case, inferences are based on their full
posterior density and not on point estimates that are prone to sampling error.
However, in a structural setting with hundreds of macroeconomic variables,
likelihood-based approaches raise several identification issues. The common
solution is to place arbitrary identifying restrictions (i.e. of purely statistical
nature) on some of the parameter matrices of the dynamic factor model,
resulting in factors that lack interpretability and impulse responses that may
not comply with economic theory. Following Del Negro and Otrock (2008),
Felices and Wieladek (2009) estimate common factors of key fundamentals
driving sovereign debt crises in 28 emerging market economies, and examine
the evolution of the link between the common factors and the fundamentals.

In this study, while the time-varying parameters are estimated in a Bayesian
context using the Gibbs sampler, the factors are replaced by the first principal
components (PC) coming from the singular value decomposition of the data
matrix, and consequently are treated as observed. That way the parameters
can be estimated at a second step, conditional on the observed factors. The
principal components estimates have economic meaning and approximate
asymptotically the true factors in the case of constant loadings. However if
the parameters are changing in each time period, the PC estimator may be
completely different than the true factors implied by the new model. In order
to alleviate any problems that might occur due to bad model fit, the follow-
ing strategy is proposed: First a typical random walk evolution is defined
for all drifting mean and variance equation parameters of the DFM, see for
example Del Negro and Otrock (2008) and Primiceri (2005), which simplifies
computations by using standard state-space methods. At a second step the
random walk evolution is augmented using the flexible mixture innovation
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specification of Giordani and Kohn (2008). By defining time-varying param-
eters with stochastic innovations that are mixtures of normals, it is possible
to define endogenously whether these parameters vary in every time period or
they are constant in every period, plus all the possible combinations between
those two (i.e. parameters which vary only in some periods).

Having established the advantage of accounting for omitted variable bias,
this study adds to an expanding recent literature (Blanchard and Simon
(2001), Cogley and Sargent (2001, 2005), Stock and Watson (2002), Gam-
betti et al. (2008), Primiceri (2005), Sims and Zha (2006), to name but a
few) which tries to explain whether the Great Moderation1 in the U.S. has oc-
curred due to a change in Feds’ reaction function (change in the propagation
mechanism of the shocks, ’good policy’) or due to a decline in the volatility of
exogenous shocks (’good luck’).It is of paramount importance to have a com-
plete model for the economy to enable us to track how changes in the interest
rate affect target variables like GDP growth, unemployment and inflation.
To that end, the potential contribution of the TVP-FAVAR approach is that
we are able to better understand the true behavioral source of the shocks held
in the economy. By expanding the standard three-equation New-Keynesian
model with the information contained in 157 U.S. quarterly macroeconomic
variables we can get closer to answering whether there where any exogenous
sources to the U.S. economy that resulted in the Great Moderation, or was
it the value of good policy.

The remainder of the paper is as follows. Section 2 specifies the dynamic
factor model as a time-varying parameters VAR model on latent factors and
the monetary policy variable. Section 3 describes the data, model fit and
model selection issues, Section 4 the empirical results from the new model,
and Section 5 concludes.

2 Methodology

2.1 The model

The standard approach to examine the effects of monetary policy on the
economy is to estimate a structural VAR on some key variables. Models of
this form have the following structure

yt = b1yt−1 + . . .+ bpyt−p + vt (1)

1i.e. the reduction in the volatility of output and inflation empirically observed in the
post-1984 period.
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where y
′
t = [x

′
t, rt], xt is a (n× 1) vector of variables provide a representation

of the economy (like output, prices, interest rates, monetary aggregates and
so on), and rt is the monetary policy instrument, i.e. the control variable of
the Central Bank. The coefficients bi, i = 1, . . . , p on each lagged value of
yt are of dimensions (n × n), and vt ∼ N(0,Ω) with Ω a (n × n) covariance
matrix. A new model is introduced in this paper, which builds on the Factor-
Augmented VAR (FAVAR) which is used to describe the decomposition of
the n-dimensional vector of observables xt into a lower dimensional vector
of k (which is much smaller than n, i.e. k � n) unobserved factors, ft.
Using this reduced form decomposition we are able consider as many series
as we need in order to capture most of the structure underlying the economy.
In standard macroeconomic applications n is in the order of some hundreds
of variables. The novel element used here is that all the parameters of the
FAVAR are stochastic. The time-varying parameters factor-augmented VAR
(TVP-FAVAR) takes the form

yt = b1,tyt−1 + . . .+ bp,tyt−p + vt (2)

where now y
′
t = [f

′
t , rt], with ft a (k × 1) vector of latent factors, rt is again

the monetary policy instrument of dimension (1×1), bi,t are (k×k) coefficient
matrices for i = 1, . . . , p and t = 1, . . . , T , and vt ∼ N(0,Ωt) with Ω a (k×k)
full covariance matrix for each t = 1, . . . , T .

The original observed series xt are linked to the factors and the monetary
policy tool through a factor regression (as in Bernanke et al. (2005)), but
with drifting parameters and subsequently takes the form

xt = λft ft + λrtrt + ut (3)

where λft is (n × k) and λrt is (n × 1), and ut ∼ N(0, Ht) with Ht =
diag(exp(h1,t), . . . , exp(hn,t)) of dimensions (n × n), for each t = 1, . . . , T .
The errors ut are assumed to be uncorrelated with the factors at all leads and
lags and mutually uncorrelated at all leads and lags, namely E(ui,tft) = 0
and E(ui,tuj,s) = 0 for all i, j = 1, . . . , n and t, s = 1, . . . , T , i 6= j and t 6= s.
The main TVP-FAVAR model consists of Equations (2) and (3) and for sim-
plicity I will refer to them as the ’FAVAR’ and ’factor model’ equations,
respectively. In order to complete the model specification, it is necessary to
characterize all model parameters and their dynamics.

The diagonality assumption of the covariance matrix2 has the implication
that the parameters in Eq. (3) can be estimated equation-by-equation, using

2There are several small issues regarding factor models, like why the error covariance
matrix is diagonal? It turns out that in some contexts this assumption can be relaxed.
Space limitations though do not allow extensive comments on all the features of this
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the following univariate regressions, for i = 1, . . . , n

xi,t = λfi,tft + λri,trt + ui,t (4)

where ui,t ∼ N(0, exp(hi,t)). Since the factors are already known, the model
need not be estimated equation-by-equation. However this approach is pre-
ferred for reasons explained in the last paragraph of this subsection.

Equation (2) is a VAR system on the factors and rt, and consequently
the mean equation coefficients and covariance matrix need special treatment.
Based on the recent literature on efficiently parametrizing large covariance
matrices (c.f. Pourahmadi (1999)), Primiceri (2005) and Cogley and Sargent
(2005) use a triangular reduction of the state (factor) error covariance being

AtΩtA
′

t = ΣtΣ
′

t (5)

or equivalently
Ωt = A−1

t ΣtΣ
′

t(A
′−1
t ) (6)

where Σt = diag(σ1,t, . . . , σk+1,t) and At is a unit lower triangular matrix
with ones on the main diagonal

At =


1 0 . . . 0

a21,t 1
. . .

...
...

. . . . . . 0
a(k+1)1,t . . . a(k+1)k,t 1

 (7)

Stacking all the parameters of Equation (2) in the vectorsBt = (b
′
1,t, . . . , b

′
p,t),

log σt = (log σ
′
1,t, . . . , log σ

′
p,t) and αt = (a

′
j1,t, . . . , a

′

j(j−1),t) for j = 1, . . . , k+1,
I follow the standard convention and assume that set of drifting parameters,
λi,t, hi,t, Bt, αt and log σt follow random walks3, but augmented with the mix-
ture innovation specification of Giordani and Kohn (2008). This implies that,
for each time period, the innovation of the random walk evolution of the pa-
rameters is defined as a mixture of two normal components (see also Koop

complicated model. The interested reader may want to consult the excellent papers by
Stock and Watson (2005, 2006) which cover forecasting & structural analysis using dynamic
factor models.

3A random walk model is nonstationary and may lead to parameters that are explosive
and tend to infinity. In practice, this shortcoming is not a problem since the data are finite
and the parameters evolve only for a short period. This also, partly explains the choice of
quarterly data in the empirical section, with not more than 200 time series observations.
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et al. (2009))
λi,t = λi,t−1 + Jλi,tη

λ
t

hi,t = hi,t−1 + Jhi,tη
h
t

Bt = Bt−1 + JBi,tη
B
t

αt = αt−1 + Jαi,tη
α
t

log σt = log σt−1 + Jσi,tη
σ
t

(8)

where ηθt ∼ N(0, Qθ) are innovation vectors independent with each other,
as well as ut and vt, while Qθ are innovation covariance matrices associated
with each of the parameter vectors λi,t, hi,t, Bt, αt, log σt, where for brevity
we define θ ∈ {λi, hi, B, α, log σ}. Some correlation can be allowed between
the disturbance terms appearing in (8), which could permit modeling more
complex dynamics. However, this flexibility comes at the cost of the pro-
liferation of the parameters that need to be estimated, and the assumption
made here is that all error components appearing in equations (2) - (8)are
uncorrelated with each other.

The random variables Jθt , are 0/1 random variables and control structural
breaks (’jumps’) in the respective innovation error of each of the time-varying
parameters. This specification is flexible as it allows the data to determine
either one of the two extreme specifications of constant parameters (iff Jθt = 0
∀ t = 1, . . . , T ) and of time-varying parameters (iff Jθt = 1 ∀ t = 1, . . . , T ).
In between those two extremes lies a specification with few breaks when
Jθt = 1 for only some t. Following Koop et al. (2009) it is easy to show that
this framework is appropriate to implement Bayesian testing of constancy of
model parameters against time-variation in some or all time-periods, using
marginal likelihoods.

Two modeling issues must be clarified at this point. First, estimating
equation (4) independently for each variable xi,t, i = 1, . . . , n means that
we can define a break indicator J for each row of λt. That is, we can have
Jλi,t 6= Jλj,t, i, j = 1, . . . , n, i 6= j. Subsequently, different dynamic patterns
for λi,t and λj,t can be modeled which allows more flexibility than if an index
variable Jλt - pertaining to the whole matrix λ, not just a certain row - was
introduced.

Second, following Primiceri (2005), efficient estimation of the (k−1)×k
2

el-
ements of the vector αt using state-space methods requires the additional
assumption that the state covariance Qα is block diagonal, where each block
corresponds to parameters belonging to separate equations. In particular,
each block consists from the parameters aij,t which are in the same row of At.
Subsequently we have the k blocks αblock 1

t = {a21,t}, αblock 2
t = {a31,t, a32,t},

..., αblock k
t = {a(k+1)1,t, ..., a(k+1)k,t}, so that each block on the diagonal of the

covariance matrix Qα is of respective dimensions.
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2.2 Estimation

The latent factors have to be treated as latent parameters whose posterior
has to be estimated from the data. This is computationally computationally
plausible, if we treat the factors as a state variable and use the Kalman filter
to derive an estimate conditial on the rest of the model parameters. This
approach is avoided because of the difficulty of correctly identifying the fac-
tors. Treating the factors as unknown, like the rest of the model parameters,
means that strong but arbitrary identifying restrictions have to be imposed
in the model, since economic theory cannot provide us with theoretical rela-
tionships when we replace observables with statistical factors. If we were to
use such restrictions, there is nothing to guarantee that the estimated fac-
tors will have sound economic interpretation and be suitable for structural
analysis. For example, in the constant parameters dynamic factor model
setting, Bernanke et al. (2005) use a triangular identification restriction in
the upper k × k block of the loadings matrix4, and argue that the Bayesian
(likelihood-based in general) estimation produces factors that do not cap-
ture information about real-activity and prices. In the time-varying setting,
the identification problem is even more accented and will inevitably lead to
impulse responses that are hardly in accordance with economic theory5.

A conceptually and computationally simpler method is used here, and
this is to approximate the factors using standard principal components. Em-
pirical studies (see Stock and Watson (1999)) have shown that the first three
to seven principal components capture most of the variance in the series xt,
while at the same time there is economic meaning in them (for example the

4This identification restriction is similar to the one that is met in cointegration analysis,
i.e. the upper block is the identity matrix. This has the implication that the first series in
the dataset loads exclusively on the first factor with coefficient 1, the second series loads
exclusively on the second factor with coefficient 1 and so on. Hence the ordering of the
variables in xt plays a significant role as it alters the likelihood function, a serious problem
that has been noted in the cointegration literature (Strachan (2003)). Unfortunately,
when using factor models, Bayesian statisticians and econometricians rely heavily on such
identification restrictions and, to my knowledge, there is no formal examination of their
implications (apart from a quick reference to this problem in the review paper of Lopes
and West (2004)).

5Del Negro and Otrock (2008) is one study which uses the Kalman filter (i.e. likelihood-
based methods) to estimate the latent factors in a TVP setting. Their application though
provides by default enough identification restrictions on the loadings matrix. This matrix
has a block structure since data for one country load only to the country’s specific factor
and with zeros on the rest of the country factors. Even so, due to the fact that their
model is heavily parameterized as well, they avoid to account for drifting autoregressive
coefficients (B = Bt), an assumption that ”...would raise additional identification issues”
(Del Negro and Otrock, 2008, section 2.1).
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first principal component proxies real activity measures). The principal com-
ponents are computed using either the singular value decomposition (SVD)
or the spectral (eigenvalue) decomposition of the data. These estimates will
probably not approximate well the true factors (if they exist) implied by the
TVP-DFM model. After all, the principal components only approximate the
static factors of Equation (3) and do not account for their autoregressive dy-
namics, as those are described by Equation (2). Only likelihood-based meth-
ods can provide estimates of the dynamic factors by means of the updating
scheme of the Kalman filter algorithm. Nevertheless, the SVD decomposi-
tion gives a meaningful reduced representation of the variables of interest,
xt, while at the same time the flexible modeling approach used here allows
to specify endogenously the extent that the parameters vary over time.

Each time varying parameter is sampled sequentially using the Gibbs sam-
pler. It is easy to see that conditional on the rest of the parameters and the
principal component estimates of the factors, each time-varying parameter
can be sampled from a conditionally Normal density using a standard state-
space filter and smoother (Carter and Kohn (1994), Durbin and Koopman
(2002)). Furthermore, conditional on each state variable θ, the covariances
of the states, Qθ, can be sampled using standard formulas. In fact these for-
mulas are essentially the same as in the previous TVP-VAR works of Cogley
and Sargent (2005), Primiceri (2005) and Koop et al. (2009), and details are
provided in the technical appendix. The indicators Jθt are sampled using
the algorithm of Gerlach et al. (2000). This is an efficient approach to mod-
elling dynamic mixtures given that Jθt can be generated without conditioning
on the states θt. Again, more implementation details can be found in the
technical appendix.

2.3 VAR representation and impulse response func-
tions

It is easy to show that the time-varying FAVAR model admits a VAR repre-
sentation with drifting parameters. First note that Equations (2) - (3) can
be rewritten as

gt = λtyt +Wtε
g
t (9)

yt = b1,tyt−1 + . . .+ bp,tyt−p + A−1
t Σtε

y
t (10)

where g
′
t = [x

′
t, rt], y

′
t = [f

′
t , rt], Wt = diag(exp(h1,t)/2, . . . , exp(hn,t)/2, 0)

such that WtW
′
t = [Ht, 0], the vectors At, Σt, b1,t, . . . , bp,t are parameters de-

fined in section 2.1, (εgt , ε
y
t ) are iid structural disturbances coming from a Nor-

mal distribution with zero mean and unit variance, and λt =

[
λft λrt

01×k 1

]
.
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Inserting (10) into (9) we get the final VAR form which is

gt = λtb1,tyt−1 + . . .+ λtbp,tyt−p + ζt (11a)

ζt = λt(A
−1
t Σt)ε

y
t +Wtε

g
t (11b)

I follow Bernanke and Blinder (1992) and others in that the federal funds
rate is assumed to be the monetary policy instrument. The federal funds rate
is sorted last in the FAVAR equation (10), and monetary policy is identified
in a recursive manner. First, the reduced form model (10) is estimated and
then a lower-triangular identification restriction (Cholesky factorization) has
to be imposed. This procedure is equivalent to estimating a recursive model
(see Lütkepohl (2005)), and implies that the factors respond to monetary
policy with one lag (i.e. after one quarter). However, as Bernanke et al.
(2005) note, there is no need to impose the same assumption to the idiosyn-
cratic components of the information variables. In particular identification
of the monetary policy shocks is implemented with a set of lower-triangular
exclusion restrictions using three blocks of variables. The first block includes
all the slow-moving variables (like real activity measures), the second block
consists only of the monetary policy tool (the federal funds rate) and, finally,
in the third block fast-moving variables (like asset prices) are included. The
assumption made is that the slow-moving variables are not allowed to re-
spond contemporaneously to monetary policy shock, which is similar to the
identification assumption for the factors. However, there is the last block, of
fast-moving financial variables, which responds instantly to monetary policy
shocks since financial markets are more sensitive to ’news’. The interested
reader should consult Bernanke et al. (2005) for exact econometric details
underlying this approach.

Methods developed for direct estimation of the structural TVP-FAVAR
model are not readily available, but these would be a direct generalization
(i.e.conditional on each t) of the constant parameters linear VARs, see Wag-
goner and Zha (2003). However in this nonlinear setting the computational
cost of such an attempt is large as impulse responses must be estimated us-
ing simulation methods (Koop et al. (1996)). For these reasons I follow the
standard convention in the literature and apply a sequential estimation pro-
cedure, where first parameters are estimated from the reduced form model
and then the structural shocks are recovered.
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3 Preliminary Analysis

3.1 Data

The data-set consists of quarterly observations on 157 U.S. macroeconomic
time series spanning the period from 1959:Q1 to 2006:Q3. The series were
downloaded from the St. Louis Fed FRED database and a complete descrip-
tion is given in the appendix. One of the series, the Federal Funds rate is
used to identify monetary policy. The remaining 156 series are the variables
in xt , which are used to extract factors. These include series like personal in-
come and outlays, GDP and components, assets and liabilities of commercial
banks in the United States, productivity and costs measures, and selected
interest rates among others. All series are seasonally adjusted, where this is
applicable, and transformed to be approximately stationary.

3.2 Priors

The choice of prior distributions is determined on the basis of conjugate
priors, which are specified to keep computation of the high dimensional pos-
teriors tractable. Due to the conditionally Gaussian structure of the state
equations (8), a reasonable choice for the initial state for all time varying
parameters - i.e. the value of the parameter at time t0 = 0) is the Normal
density. The choice θ0 ∼ N (0, 4I), where θ is a vector summarizing all drift-
ing parameters λi, hi, B, α, log σ, 0 is a vector of 0’s, I is the identity matrix,
and the dimensions of 0, I correspond to the dimensions of each respective
parameter. Similarly the priors on the covariance matrices Qθ/−h

follow the
inverse Wishart density, for θ/−h ∈ {λi, B, α, σ}, and on the variances Qhi

the
inverse Gamma density, which are the standard conjugate choices (see Koop
(2003)). As is the case with Bayesian analysis in general, the challenging
task at this point is the choice of prior hyper-parameters, i.e. to give reason-
able values for the prior means-variances. Conditional on the factors which
are replaced by principal components and the jump indicators Jθt which are
discussed later in detail, the rest of the TVP-FAVAR model is quite similar
to the one used in Primiceri (2005). Subsequently, the hyperparameters are
set following this authors’ suggestions and further details can be found in the
technical appendix.

The only ’nonstandard’ parameters in this model are the ones related
to the mixture innovation extension. The 0/1 variables Jθt are assumed
to be random draws from a Bernoulli distribution, p(Jθt = 1) = πθ, θ ∈
{λi, hi, B, α, log σ}. The probabilities πθ control the transition of the index
Jθt between the two possible states (1:break - 0:no break), and an extra hi-
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erarchical layer is introduced in order to update them from the information
in the data. A Beta prior of the form πθ ∼ Beta(τ0, τ1) is placed on this
hyper-parameter, which controls the prior belief about the number of breaks
through the choice of τ0 and τ1. Two choices are applied in this paper, which
either reflect ignorance about the number of breaks ((τ0, τ1) = (1/2, 1/2)
which implies E(πθ) = 0.5 and std(πθ) = 0.3535), or the expectation that
only few breaks occurred during the sample period((τ0, τ1) = (0.01, 10) which
implies E(πθ) = 0.001 and std(πθ) = 0.0095). For more discussion about the
nature of these prior choices the reader is referred to Koop et al. (2009). Note
that for simplicity, and in the absence of prior information, τ0 and τ1 are the
same for all drifting parameters defined in Eq. (8).

A challenging task evident in dynamic factor models is to select the num-
ber of static and dynamic factors. A standard strategy is to use available
statistical criteria to select the number of factors. However as Bernanke et al.
(2005) state, the suggested number of factors from a statistic or a criterion
function may not be the actual number of factors used in the model. In that
respect, the sensitivity of the results across different number of factors is
considered. Ideally we would want to examine and compare all models with
3 to 9 principal components, according to the findings of Stock and Watson
(2005). Notice though, that for the sake of brevity only specifications with
up to k = 4 factors are considered. That way only a maximum of k + 1 = 5
series appear in the FAVAR equation, as a means of restraining the number of
time-varying parameters to expand without bound. This doesn’t necessarily
means that there is possible misspecification, since 3 and 4 factors perform
really well in many empirical applications.

3.3 Testing parameter evolution

Before discussing macroeconomic issues regarding the time-varying FAVAR,
it is interesting to examine what type of time variation is supported by the
data, and specifically by the principal components estimates of the factors.
Apart from that, different restricted versions of the TVP-FAVAR can be con-
sidered where we can begin from the FAVAR with constant parameters and
allow several (combinations of) parameters to drift. Estimating and testing
all possible model combinations with marginal likelihoods is a necessary task,
albeit computationally demanding. The mixture innovation extension makes
this process much easier by providing posterior probabilities on the time
varying nature of each parameter. That way, the mixture innovation speci-
fication can be thought of as a special form of the model selection mixture
priors used in Bayesian statistics (see for example George and McCulloch
(1997)). Roughly speaking, in this latter literature an indicator variable γ is
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used to select which regression parameter is zero or not, while here the indi-
cator variable Jθ determines which parameter θ is time-varying or constant.

Table 1 presents the posterior probabilities of a break, p(πθ|Data), for
each parameter of interest θ using the informative and uninformative choices
respectively. It should be noted that there is evident time evolution for all
the parameters in the FAVAR equation, using the uninformative prior. The
strongest evidence is for the parameters of the FAVAR equation (10), while
the ones in the factor equation (9) vary moderately. Even in the case where
variation in the parameters is suppressed a priori using the few breaks prior
there is strong evidence of time-variation in the FAVAR equation. Koop
et al. (2009) report similar evidence on their mixture innovation TVP-VAR.
On the other hand, the probabilities on the factor model equation are very
close to zero, using the informative prior. This evidence suggests that from
now on we should focus on the results from two different models, instead
of two different priors on πθ. The first model is the base model which is
described by the equations (5) - (10) using the uninformative prior on πθ,
and for short it will be denoted as the Benchmark TVP-FAVAR(k,p). The
other model will be the TVP-FAVAR where we impose Jλi,t = Jhi,t = 0 and
JBt = JAt = Jσt = 1, for all t.

Note that we can get probabilities of a break at each point in time. These
can be obtained as the average of the posterior draws of Jθt . That is, if we
have a sequence of S draws from the posterior density p(Jθt |Data), then we
can easily get the quantity

E(Jθt |Data) =
1

S

S∑
l=1

(
Jθt
)
(l)

(12)

which is a time-varying proportion of models visited that had Jθt = 1, where
Jθt (l) is the l-th draw of Jθt . Presenting all posterior probabilities of jumps
for the parameters λi,t and hi,t, for each i = 1, . . . , n is not possible. The
same restriction applies to the quantity E(Jθt |Data), which would inform
us about the evolution of the jump variable in each parameter θ. However,
Figure 1 provides a visual assessment of how the median of the posterior
loadings in the GDP equation vary over time under the uninformative prior.
In this graph, the loadings of GDP on the four factors (λfGDP,t) are denoted as
(λ1, λ2, λ3, λ4) while the loading on the Federal funds rate (λrGDP,t) is denoted
as λ5. There seems to be no obvious pattern in the variation of the loadings
that could be connected with theory or previous experience.
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3.4 Why time-varying loadings?

A crucial question to answer is what is the intuition behind time varying
loadings when standard principal components are extracted? It is well known
that asymptotically the principal components estimate the factors only when
the loadings matrix is constant. These estimates though will not fit the
data 100%, unless k = n principal components are extracted. Hence, given
the principal components estimates, having a nonlinear specification for the
loadings matrix has the potential to increase the proportion of variability
in xt explained by the common component λtft. Nevertheless, nothing can
guarantee that a full time-varying specification will fit better (or fit well at
all) than the constant alternative. This explains why the flexible mixture
innovation specification is necessary in order to overcome this problem. An
extreme scenario would be all the indices Jλ,t to be zero for each t, and end
up with a model equivalent to the constant loadings factor model.

Also note that presumably we could use a two step estimator for the
factors in the spirit of Giannone et al. (2004). These authors - in a dy-
namic factor model setting with constant parameters - replace the factors
at a first step using principal components and estimate the values of all un-
known model coefficient using simple likelihood-based methods (as it is done
in this paper, but with time-varying parameters). Then at a second step,
an updated estimate of the factors is obtained using the Kalman filter and
keeping the values of the coefficients fixed to the estimates from the previous
step. Subsequently there is a potential to do this here: save the samples
from the posteriors of {λi, hi, B, α, log σ} and use Kalman filtering to get
new estimates of the factors. However, unlike the DFM with constant pa-
rameters, there is no theoretical justification for doing this. The validity of
this approach could be evaluated empirically though, but it is avoided since
the principal components already give satisfactory performance, with smaller
computational costs.

To assess visually the fit of the two models, the first column of Figure 1
plots the actual (demeaned and standardized) time-series of inflation6 and
a short term interest rate, and their projections on the first 4 static factors
implied by the constant and time-varying/mixture-innovation model. That
is the lines plotted are:

x◦i,t,

xPCi,t = λ̂fi f̂t,

xTV L−PCi,t = λ̂fi,tf̂t

(13)

6The data-set contains several measures of inflation, like CPI, PCE deflator and the
GDP deflator. In this example, ”inflation” is defined as the annual change in the GDP
deflator series.
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where i=inflation, interest rate, f̂t is the principal components estimate of
the 4 static factors, λ̂fi,t is the mean of the posterior of the time-varying

loadings, λfi,t, and λ̂fi is the OLS estimate from the factor model with constant

parameters. Subsequently, x◦i,t, x
PC
i,t and xTV L−PCi,t are defined as the observed

values, the projection from the PC estimates using constant loadings, and the
projection from the PC estimates using time-varying loadings, respectively.
The second column plots the differences of the mean absolute errors occurring
from the two different projections, i.e. ∆error = |x◦i,t− λ̂i,tf̂t|−|x◦i,t− λ̂if̂t| so
that when ∆error < 0, the time-varying/mixture-innovation model provides
a better fit. Note that the principal components estimate of the factors,
should normally be associated with a sampling error, nevertheless this error
is common to the constant and time varying models and cancels out in the
comparison. Additionally, posterior medians of λi and λi,t have been used to
get point estimates of the projections (xPCi,t , x

TV L−PC
i,t ).

Although only two representative series - out of a set of 156 belonging in
the vector xt - are plotted in Figure 1, a similar picture is obtained for all
of the series. The reduced standard errors from the estimation with time-
varying loadings, suggest that the mixture innovation specification produces
projections much closer to the original series, providing this new approach to
principal component analysis with a sound empirical justification. One al-
ternative approach for time-varying modeling of the loadings matrix is given
in Stock and Watson (2008). They prove that the principal component esti-
mates span the true space of the static factors also in the case of moderate
parameter drifts in the factor loadings. They also provide examples by as-
suming one known break occurring in 1984 and subsequently splitting the
sample in two in order to obtain principal components estimates in each
subsample. It is obvious that this novel strategy has the disadvantage of
assuming a known break date.

4 Empirical Results

4.1 Monetary policy mistakes and the Great Modera-
tion

In principle, it is wise to first examine the nonsystematic policy, i.e move-
ments in the Fed’s funds rate that are attributed to exogenous shocks and not
to changes in the structure of the economy. In order to achieve that, Figure 1
presents the median posterior estimates of the standard errors in the factors
and the Federal Funds rate from the Benchmark model with 4 factors and
2 lags. These are the square root of the main diagonal of the matrices Ωt,
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for all t. High variance of monetary policy shocks is connected with higher
policy mistakes. It is obvious from Figure 1 (e) that during 1979-1984 the
volatility of the shocks in the federal funds rate is quite high relative to the
rest of the sample. In this period there was a shift of focus from interest
rates (prices) to reserves available to banks (quantities) leading the interest
rate to rise at the most rapid rate in the history of U.S.

The standard deviation of the first three factors reveals a very interesting
pattern known as the Great Moderation. The variation in the errors gets
much lower after approximately 1984 compared to the pre-1984 era. The
same is not true for the fourth factor, whose volatility reaches peaks during
1973, 1987, 1990 and 2003 while it explodes in the last 2 years of the sample.
The Great Moderation is obvious using the factors, while this is not true
when the standard three-variable VAR is used. Additionally, the information
contained in the factors has the implication that the standard errors in the
Fed’s funds rate equation are quite low and smooth (i.e. without many
small peaks). The reader is adviced to make comparisons with the standard
errors in the time-varying VAR’s of Koop et al. (2009) and Primiceri (2005).
The observation that three out of the four factors’ standard errors have a
structural break around 1984, is consistent with the fact that the decline in
volatility has occurred broadly across the economy, affecting employment,
prices and wages, and consumption.

Notice that it is straightforward to recover the time varying conditional
variances of each specific variable in our data-set. These are defined as

var(xi,t|λi,t, Hii,t,Ωt) = λi,tΩtλ
′

i,t +Hii,t (14)

for i = 1, . . . , n. These are the variance decompositions implied by the factor
model with time-varying parameters which, in the spirit of Justiniano and
Primiceri (2008), allow us to examine which part of the Great Moderation
is explained by using a large model with so many variables. For the real
GDP series in particular, graphs are plotted for the part of the conditional
variance which remains unexplained by the model, Hii,t = exp(hi,t), and the
part that is explained by the factors, λi,tΩtλ

′
i,t. These are respectively in

parts (a) and (b) of Figure 3. The shocks on the factors fully capture the
structural break in 1984:Q1, while the idiosyncratic errors on real GDP show
a constant downward trend. The same pattern is true for other variables: the
factor decomposition λi,tΩtλ

′
i,t clearly explains a possibly large proportion of

the Great Moderation (a break between 1982:Q2 - 1984:Q1, depending on
the series i = 1, . . . , n), while the idiosyncratic errors either decline or rise
slowly, but definitely not in a fashion that could possibly suggest any form
of unexplained structural instability.
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Two arguments of great empirical value may be derived from the above
observation. First, the explanation of the Great Moderation seems to lie
heavily in the dynamics of one or more of the variables in this data-set. The
TVP-FAVAR model suggests that there is no exogenous power that may have
driven the Great Moderation in the US Economy. That is, we should seek the
causes of the reduction in the mean and variance of GDP and price inflation,
to the evolution in one of the macroeconomic series used in this dataset. For
that reason, a more structural framework is needed, that could potentially
impose more structure to the relationship between economic fundamentals
than the latent factors can. Within the factor model, one solution would
be to estimate the factors derived from ”blocks of releases”, i.e. one factor
extracted from proce indexes, another one from exchange rates and so on,
with respective structural interpretation (c.f. Belviso and Milani (2006)).
This approach needs lots of experimentation in order to achieve empirically
the perfect mix between number of factors and interpretability, and it is left
for future research. A different route would be to use large scale DSGE
models with time-varying volatility, as in Justiniano and Primiceri (2008).

A second remark we can make here is that the Great Moderation was
not the result of an ongoing trend, like in Blanchard and Simon (2001).
Hence the time-varying model is consistent with the observation of Kim and
Nelson (1999) and McConnell and Perez-Quiros (2000), who document an
abrupt change in the mid-80’s. Notice also that for some series, including
inflation, the large drop seems to occur in 1982:Q4, which is also consistent
with Stock and Watson (2002) estimates using 168 series. Even so, from a
purely statistical point of view, the mixture innovation seems to prefer the
random walk evolution of the parameters and not abrupt structural breaks
in mid-1980’s.

4.2 Impulse responses of main economic indicators

At this point, it is interesting to examine and compare the impulse responses
of different time periods, in a data rich environment. The first column of Fig-
ure 5 plots medians of the posterior distributions of the impulse responses
of inflation, measured by the GDP deflator, and the unemployment rate, for
three different representative dates. The right panel of Figure 5 plots the dif-
ferences of the impulse responses between these dates. The dates are the ones
used in Primiceri (2005), i.e 1971:Q1, 1983:Q3 and 1996:Q1, and are chosen
arbitrarily to represent the chairmanships of Burns, Volcker and Greenspan.
Responses for 2006, which would correspond to the inclusion of a ”Bernanke
regime” in the analysis, are not included for two reasons. First, there does
not seem to be differences between responses in 1996 and any of the three
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quarters of 2006 in the sample. Second, there are not enough observations
for the Bernanke chairmanship, while these few representative observations
are at the end of the sample and may be prone to the measurement error
associated with using data which, most probably, are going to be revised
again in the future. All the results come from the Benchmark FAVAR with
4 factors and 2 lags.

In the top panel of Figure 5, we can see that the response of inflation
in 1975 is positive until 8 quarters after the shock. This price puzzle is due
to the fact that during the ’70s, both inflation and interest rates were high
(stagflation). Primiceri (2005) predicts responses of inflation that demon-
strate a more accented price puzzle and that are also almost indistinguish-
able between the three periods. On the other hand, the shapes of the impulse
responses of inflation from the TVP-VAR of Koop et al. (2009) are almost
identical to the ones presented here. It is expected, thought, that the TVP-
FAVAR will give more reliable results, since it can utilise information from
much more variables than the previous models. Subsequently we can easily
observe that the impulse responses of inflation have less accented a prize
puzzle, compared to traditional VARs or TVP-VARs; see also the discussion
in Stock and Watson (2005). The responses of unemployment, presented in
the bottom panel of Figure 5, also show that following a contractionary mon-
etary policy the job market was affected more intensely in 1975. In contrast
to what (Primiceri, 2005, Figure 3) reports using a 3-variable TVP-VAR,
there seems to be substantial differences in the responses of unemployment
between the three periods.

Figures 6 & 7 present the posterior medians of impulses for 12 variables,
coming from the Benchmark TVP-FAVAR(4,2) and the TVP-FAVAR(3,2)
with constant λ and H, respectively. Note that in the second model, the
TVP-FAVAR with constant loadings, I choose to use 3 lags only for the
purpose of parsimony. That is, since the Benchmark model has all the pa-
rameters time-varying and 4 factors, it is interesting use a more parsimonious
competing model in order to assess how large is the impulse response esti-
mation error. The responses have the expected sign and magnitude: The
real economy (GDP, Housing Starts) declines; monetary aggregates, invest-
ments, loans and interest rates decline; imports and exports fall; the dollar
appreciates. The issue arising in these graphs again is the one of the wide
difference between the impulse responses for the three representative time
periods. Both models agree to the fact that the responses of GDP, M2,
Exchange Rate, Investments at commercial banks, C&I loans, Imports &
Exports, and Housing Starts were possibly quite different between these pe-
riods.
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5 Conclusions

There is a large literature that examines the evolution of monetary policy
over the past years. Over these years lots of changes occurred in the economy,
like the moderation of GDP and inflation volatility dated circa 1984, and the
anchoring of inflation expectations which is dated at the same time as well.
Lots of papers try to explain the Great Moderation using small data-sets; see
Giannone et al. (2007) for a survey 7. One of the main contributions of this
paper is the support for the fact that by using large data-sets we are able
to better understand the nature of correlations and comovements between
macroeconomic variables by using factors. This paper examines time-varying
comovements and decompositions of a large number of variables.

A second contributions of this paper is to show that all the merits of
the constant parameters Dynamic Factor Model (no omitted variable bias
with the minimum number of parameters) can be used in a time-varying
setting successfully. Using Bayesian methods in order to preserve parsimony
in the time-varying parameters, and standard principal components in order
to avoid identification issues arising when estimating latent factors, we can
end up with sensible time-varying impulse response functions, comparable to
the ones used in the time-varying VAR literature.

In order to answer more and more questions in the future, factor models
can play a significant leading role since their advantages are many. At the
same time, the fact that dynamic factor models are atheoretic time series
models, can be tackled if they are combined with DSGE models. For exam-
ple, Boivin and Giannoni (2006a) show how factors can be used in a DSGE
setting, combining the merits of large data-sets, with those of structural eco-
nomic models. We can anticipate that using factors in a time-varying DSGE
model, would be a future challenge that will extend Justiniano and Primiceri
(2008) and may provide even more interesting, new empirical findings.

7By the way, this is one of the few papers in this literature that uses an extensive data-
set in order to examine the Great Moderation without the pitfalls of omitted variable
bias
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A Data and Transformations

All series were downloaded from St. Louis’ FRED database and cover the
quarters Q1:1959 to Q3:2006. The series HHSNTN, PMNO, PMDEL, PMNV,
MOCMQ, MSONDQ (series numbered 152 - 157 in the following table) were
kindly provided by Mark Watson and come from the Global Insights Ba-
sic Economics Database. All series were seasonally adjusted: either taken
adjusted from FRED or by applying to the non-seasonally adjusted series
a quarterly X11 filter based on an AR(4) model (after testing for season-
ality). Some series in the database were observed only on a monthly basis
and quarterly values were computed by averaging the monthly values over
the quarter. Following Bernanke et al. (2005), the fast moving variables are
interest rates, stock returns, exchange rates and commodity prices. The rest
of the variables in the dataset are the slow moving variables (output, employ-
ment/unemployment etc). All variables are transformed to be approximate
stationary. In particular, if zi,t is the original untransformed series, the trans-
formation codes are (column Tcode below): 1 - no transformation (levels),
xi,t = zi,t; 2 - first difference, xi,t = zi,t − zi,t−1 ; 4 - logarithm, xi,t = log zi,t;
5 - first difference of logarithm, xi,t = log zi,t − log zi,t−1.
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# Mnemonic Tcode Description

1 CBI 1 Change in Private Inventories
2 FINSAL 5 Final Sales of Domestic Product
3 FSDP 5 Final Sales to Domestic Purchasers
4 GDP 5 Gross Domestic Product, 1 Decimal
5 GDPC96 5 Real Gross Domestic Product, 3 Decimal
6 FINSLC96 5 Real Final Sales of Domestic Product, 3 Decimal
7 FGCE 5 Federal Consumption Expenditures & Gross In-

vestment
8 FGSL 5 Federal Grants-in-Aid to State & Local Govern-

ments
9 DGI 5 Federal National Defense Gross Investment
10 NDGI 5 Federal Nondefense Gross Investment
11 TGDEF 1 Net Government Saving
12 SLINV 5 State & Local Government Gross Investment
13 SLEXPND 5 State & Local Government Current Expenditures
14 EXPGSC96 5 Real Exports of Goods & Services, 3 Decimal
15 IMPGSC96 5 Real Imports of Goods & Services, 3 Decimal
16 CIVA 1 Corporate Inventory Valuation Adjustment
17 CP 5 Corporate Profits After Tax
18 CNCF 5 Corporate Net Cash Flow
19 DIVIDEND 5 Net Corporate Dividends
20 RENTIN 5 Rental Income of Persons with Capital Consump-

tion Adjustment (CCAdj)
21 GDPDEF 5 Gross Domestic Product: Implicit Price Deflator
22 GDPCTPI 5 Gross Domestic Product: Chain-type Price Index
23 FPI 5 Fixed Private Investment
24 GGSAVE 1 Gross Government Saving
25 GSAVE 5 Gross Saving
26 PRFI 5 Private Residential Fixed Investment
27 CMDEBT 5 Household Sector: Liabilites: Household Credit

Market Debt Outstanding
28 INDPRO 1 Industrial Production Index
29 NAPM 1 ISM Manufacturing: PMI Composite Index
30 HCOMPBS 5 Business Sector: Compensation Per Hour
31 HOABS 5 Business Sector: Hours of All Persons
32 RCPHBS 5 Business Sector: Real Compensation Per Hour
33 ULCBS 5 Business Sector: Unit Labor Cost
34 COMPNFB 5 Nonfarm Business Sector: Compensation Per Hour
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35 HOANBS 5 Nonfarm Business Sector: Hours of All Persons
36 COMPRNFB 5 Nonfarm Business Sector: Real Compensation Per

Hour
37 ULCNFB 5 Nonfarm Business Sector: Unit Labor Cost
38 UNRATE 1 Unemployment Rate: All Workers, 16 Years &

Over
39 UEMPLT5 5 Civilians Unemployed - Less Than 5 Weeks
40 UEMP5TO14 5 Civilian Unemployed for 5-14 Weeks
41 UEMP15OV 5 Civilians Unemployed - 15 Weeks & Over
42 UEMP15T26 5 Civilians Unemployed for 15-26 Weeks
43 UEMP27OV 5 Civilians Unemployed for 27 Weeks and Over
44 NDMANEMP 5 All Employees: Nondurable Goods Manufacturing
45 MANEMP 5 Employees on Nonfarm Payrolls: Manufacturing
46 SRVPRD 5 All Employees: Service-Providing Industries
47 USTPU 5 All Employees: Trade, Transportation & Utilities
48 USWTRADE 5 All Employees: Wholesale Trade
49 USTRADE 5 All Employees: Retail Trade
50 USFIRE 5 All Employees: Financial Activities
51 USEHS 5 All Employees: Education & Health Services
52 USPBS 5 All Employees: Professional & Business Services
53 USINFO 5 All Employees: Information Services
54 USSERV 5 All Employees: Other Services
55 USPRIV 5 All Employees: Total Private Industries
56 USGOVT 5 All Employees: Government
57 USLAH 5 All Employees: Leisure & Hospitality
58 AHECONS 5 Average Hourly Earnings: Construction
59 AHEMAN 5 Average Hourly Earnings: Manufacturing
60 AHETPI 5 Average Hourly Earnings: Total Private Industries
61 AWOTMAN 1 Average Weekly Hours: Overtime: Manufacturing
62 AWHMAN 1 Average Weekly Hours: Manufacturing
63 HOUST 4 Housing Starts: Total: New Privately Owned

Housing Units Started
64 HOUSTNE 4 Housing Starts in Northeast Census Region
65 HOUSTMW 4 Housing Starts in Midwest Census Region
66 HOUSTS 4 Housing Starts in South Census Region
67 HOUSTW 4 Housing Starts in West Census Region
68 HOUST1F 4 Privately Owned Housing Starts: 1-Unit Struc-

tures
69 PERMIT 4 New Private Housing Units Authorized by Build-

ing Permit
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70 NONREVSL 5 Total Nonrevolving Credit Outstanding, SA, Bil-
lions of Dollars

71 USGSEC 5 U.S. Government Securities at All Commercial
Banks

72 OTHSEC 5 Other Securities at All Commercial Banks
73 TOTALSL 5 Total Consumer Credit Outstanding
74 BUSLOANS 5 Commercial and Industrial Loans at All Commer-

cial Banks
75 CONSUMER 5 Consumer (Individual) Loans at All Commercial

Banks
76 LOANS 5 Total Loans and Leases at Commercial Banks
77 LOANINV 5 Total Loans and Investments at All Commercial

Banks
78 INVEST 5 Total Investments at All Commercial Banks
79 REALLN 5 Real Estate Loans at All Commercial Banks
80 BOGAMBSL 5 Board of Governors Monetary Base, Adjusted for

Changes in Reserve Req.
81 TRARR 5 Board of Governors Total Reserves, Adjusted for

Changes in Reserve Req.
82 BOGNONBR 5 Non-Borrowed Reserves of Depository Institutions
83 REQRESNS 5 Required Reserves, Not Adjusted for Changes in

Reserve Requirements
84 RESBALNS 5 Reserve Balances with Fed. Res. Banks, Not Adj.

for Changes in Res. Req.
85 BORROW 5 Total Borrowings of Depository Institutions from

the Federal Reserve
86 EXCRESNS 5 Excess Reserves of Depository Institutions
87 NFORBRES 1 Net Free or Borrowed Reserves of Depository In-

stitutions
88 M1SL 5 M1 Money Stock
89 CURRSL 5 Currency Component of M1
90 CURRDD 5 Currency Component of M1 Plus Demand De-

posits
91 DEMDEPSL 5 Demand Deposits at Commercial Banks
92 TCDSL 5 Total Checkable Deposits
93 TVCKSSL 5 Travelers Checks Outstanding
94 M2SL 5 M2 Money Stock
95 M2OWN 5 M2 Own Rate
96 SVSTCBSL 5 Savings and Small Time Deposits at Commercial

Banks
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97 SVSTSL 5 Savings and Small Time Deposits - Total
98 SVGCBSL 5 Savings Deposits at Commercial Banks
99 SVGTI 5 Savings Deposits at Thrift Institutions
100 SAVINGSL 5 Savings Deposits - Total
101 STDCBSL 5 Small Time Deposits at Commercial Banks
102 STDTI 5 Small Time Deposits at Thrift Institutions
103 STDSL 5 Small Time Deposits - Total
104 M2MSL 5 M2 Minus Small Time Deposits
105 M2MOWN 5 M2 Minus Own Rate
106 MZMSL 5 MZM Money Stock
107 DDDFCBNS 5 Demand Deposits Due to Foreign Commercial

Banks
108 DDDFOINS 5 Demand Deposits Due to Foreign Official Institu-

tions
109 USGVDDNS 5 U.S. Government Demand Deposits and Note Bal-

ances - Total
110 USGDCB 5 U.S. Government Demand Deposits at Commer-

cial Banks
111 CURRCIR 5 Currency in Circulation
112 FEDFUNDS 1 Effective Federal Funds Rate
113 TB3MS 1 3-Month Treasury Bill: Secondary Market Rate
114 TB6MS 1 6-Month Treasury Bill: Secondary Market Rate
115 GS1 1 1-Year Treasury Constant Maturity Rate
116 GS3 1 3-Year Treasury Constant Maturity Rate
117 GS5 1 5-Year Treasury Constant Maturity Rate
118 GS10 1 10-Year Treasury Constant Maturity Rate
119 MPRIME 1 Bank Prime Loan Rate
120 AAA 1 Moody’s Seasoned AAA Corporate Bond Yield
121 BAA 1 Moody’s Seasoned BAA Corporate Bond Yield
122 sTB3MS 1 TB3MS - FEDFUNDS
123 sTB6MS 1 TB6MS - FEDFUNDS
124 sGS1 1 GS1 - FEDFUNDS
125 sGS3 1 GS3 - FEDFUNDS
126 sGS5 1 GS5 - FEDFUNDS
127 sGS10 1 GS10 - FEDFUNDS
128 sMPRIME 1 MPRIME - FEDFUNDS
129 sAAA 1 AAA - FEDFUNDS
130 sBAA 1 BAA - FEDFUNDS
131 EXSZUS 5 Switzerland / U.S. Foreign Exchange Rate
132 EXJPUS 5 Japan / U.S. Foreign Exchange Rate
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133 EXUSUK 5 U.S. / U.K Foreign Exchange Rate
134 EXCAUS 5 Canada / U.S. Foreign Exchange Rate
135 PPIACO 5 Producer Price Index: All Commodities
136 PPICRM 5 Producer Price Index: Crude Materials for Further

Processing
137 PPIFCF 5 Producer Price Index: Finished Consumer Foods
138 PPIFCG 5 Producer Price Index: Finished Consumer Goods
139 PFCGEF 5 Producer Price Index: Finished Consumer Goods

Excluding Foods
140 PPIFGS 5 Producer Price Index: Finished Goods
141 PPICPE 5 Producer Price Index Finished Goods: Capital

Equipment
142 PPIENG 5 Producer Price Index: Fuels & Related Products

& Power
143 PPIIDC 5 Producer Price Index: Industrial Commodities
144 PPIITM 5 Producer Price Index: Intermediate Materials:

Supplies & Components
145 CPIAUCSL 5 Consumer Price Index For All Urban Consumers:

All Items
146 CPIUFDSL 5 Consumer Price Index for All Urban Consumers:

Food
147 CPIENGSL 5 Consumer Price Index for All Urban Consumers:

Energy
148 CPILEGSL 5 Consumer Price Index for All Urban Consumers:

All Items Less Energy
149 CPIULFSL 5 Consumer Price Index for All Urban Consumers:

All Items Less Food
150 CPILFESL 5 Consumer Price Index for All Urban Cons.: All

Items Less Food & Energy
151 OILPRICE 5 Spot Oil Price: West Texas Intermediate
152 HHSNTN 1 U. Of Mich. Index Of Consumer Expectations
153 PMNO 1 NAPM New Orders Index
154 PMDEL 1 NAPM Vendor Deliveries Index
155 PMNV 1 NAPM Inventories Index
156 MOCMQ 5 New Orders (Net) - Consumer Goods & Materials
157 MSONDQ 5 New Orders, Nondefense Capital Goods
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B Tables and Figures

Table 1: Average posterior probabilities of J = 1 under informative and
uninformative priors

E(πθ|data)
Parameter θ Informative prior (few breaks) Uninformative prior

λi,t 0 - 0.108 0.571 - 0.680
log hi,t 0.032 - 0.091 0.325 - 0.542
Bt 0.3386 0.9181
αt 0.2138 0.8731

log σt 0.8254 0.9781
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Figure 6: Impulse Responses from Benchmark FAVAR(4,2): i) 1975:Q1 (blue
line), ii) 1981:Q3 (green line) and iii) 1996:Q1 (red line)
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Figure 7: Impulse Responses from TVP-FAVAR (3,2) with constant loadings:
i) 1975:Q1 (blue line), ii) 1981:Q3 (green line) and iii) 1996:Q1 (red line)
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Technical Appendix

The basic model consists of Equations (2) to (8), but here for the purpose
of estimation and inference I will use the formulation in Equations (9)-(10).

Writing the vectors yt =
�
ft
rt

�
and gt =

�
xt
rt

�
analytically, and stacking the

autoregressive coe¢ cients in one vector, Equations (9) - (10) can be rewritten
in the following form �

xt
rt

�
= �t

�
ft
rt

�
+Wt�

g
t (T.1)

�
ft
rt

�
= Z

0

tBt + A
�1
t ��

y
t (T.2)

where �t =
�
�ft �rt
01�k 1

�
a (n�1)�(k�1)matrix,Wt = diag(exp(h1;t)=2; : : : ;

exp(hn;t)=2; 0), Bt = (b
0
1;t; : : : ; b

0
p;t), Z

0
t = Ik+1 


"�
ft�1
rt�1

�0
; : : : ;

�
ft�p
rt�p

�0#
with the symbol 
 denoting the Kronecker product. Note that (T.1) now
has (n � 1) equations in total (n columns of xt and one column of rt) even
though the equations of interest are only the �rst n ones. The last equation
has known parameters (rt = 0 � ft + 1 � rt + 0 � �gn+1;t), and it is used only
to help write the model (T.1) - (T.2) as a VAR system (notice that yt now
enters both the R.H.S of (T.1) and the L.H.S. of (T.2), so we can easily plug
in the second eqution into the �rst one, as shown in the main text). The
drifting parameters evolve according to (8)

�i;t = �i;t�1 + J
�
i;t�

�
t

hi;t = hi;t�1 + J
h
i;t�

r
t

Bt = Bt�1 + J
B
t �

B
t

�block 1t = �block 1t�1 + J�
block 1

t ��
block 1

t

�block 2t = �block 2t�1 + J�
block 2

t ��
block 2

t
...

�block kt = �block kt�1 + J�
block k

t ��
block k

t

log �t = log �t�1 + J
�
t �

�
t

(T.3)

with errors ��t � N(0; Q�), � = �i; hi; B; �
block 1
t ; �block 2t ; : : : ; �block kt ; log �

where for simplicity I drop the subscript t in the notation. Formulation (T.3)
is di¤erent than equation (8), because the (k+1)�k

2
elements in the parameter

i



vector �t are sampled in k blocks1. Each block has elements �block 1t = fa21;tg,
�block 2t = fa31;t; a32;tg, ..., �block kt = fa(k+1)1;t; :::; a(k+1)k;tg representing the el-
ements in the k rows of the matrix At, as these are de�ned in equation (7).
The implication of the block sampling scheme is that now there is a not a
unique break index JA;t for the lower triangular matrix At, but k di¤erent
indexes J�block j ;t for each block of elements �

block j
t , j = 1; :::; k. Recall also

that the parameters in (T.1) are drawn independently from each i univariate
equation, i = 1; :::; n, due to the diagonality assumption of the covariance
matrix Ht. This allows to de�ne an index Jt for each row �i;t of �t (which is
denoted as J�i;t in (T.3)), and that way model more complex dynamics (see
also the main text).

Priors and sensitivity

The initial state of the time varying parameters (at time t = 0) is drawn
randomly from Normal distributions of the form:

�0 � N (m�; V �)

Note that uninformative priors are based on the choice m� = 0, V � = 4I
for all � = �i; hi; B; �

block 1
t ; �block 2t ; : : : ; �block kt ; log �, i = 1; :::; n. As it

is the usually the case in state-space models, there is little sensitivity to
the choice of the initial values for the state variables (the time varying
parameters �). This is true especially since the �nal parameter estimates
are the smoothed ones which utilise the information in the whole sample,
not just time t. In time-varying paramters models in general, the crucial
choice is the prior on the covariance of the state variables. In that re-
spect, I use conjugate priors but the hyperparameters are �ne-tuned fol-
lowing Primiceri (2005) for reasons explained in that paper. An inverse-
Wishart prior is placed on the covariance matrices, Q�=�h, where I de�ne
�=�h = �i; B; �

block 1
t ; �block 2t ; : : : ; �block kt ; log �. Each hi is scalar, so that the

inverse-Gamma prior is de�ned instead. The prior densities and hyperpara-
meters are de�ned as

Q�=�h � iW (l�=�h � (1 + n�=�h) � V
OLS
�=�h

; 1 + n�=�h)

Qh � iG(lh � (1 + nh) � V OLSh ; 1 + nh)

1Since the factors are known (principal component estimates), equations (T.1) - (T.2)
are estimated independently. Subsequently (T.2) can be estimated using standard methods
developed in the TVP-VAR literature. Here I follow Primiceri (2005) and the reader should
consult the appendix of this paper for full estimation details. Also (T.1) is estimated
equation by equation, due to the diagonality assumption of the covariance matrixWt,which
essentially reduces estimation to n time-varying parameter regression.
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where n� denotes the number of elements on each state vector �, V OLS� is the
variance of the OLS estimate for �, l� are tunning constants whose values
are based on Primiceri (2005, Section 4.4), and iW (a; b) and iG(a; b) denote
the inverse-Wishart and inverse-Gamma distributions respectively with scale
parameter a and shape parameter b.
The jump variables J�t come from a Bernoulli density. An initial �guess�

has to be made for the value of J�1 , i.e. when time t = 1, while the states in
the subsequent periods are updated using the Gerlach et al. (2000) algorithm.
Since there is no prior information to set the initial condition J�1 , either
the assumption that all the parameters remain constant in the �rst period
(J�1 = 0 ) or that all parameters change in the �rst period (J�1 = 1) may
be used. It turns out that these two initial �guesses�imply observationally
equivalent models, since the posterior results are not a¤ected by this choice.
The prior densities are formulated as

J�t � Bernoulli(��)

The only hyperpamater associated with each Bernoulli prior is its respective
probability, denoted by ��. One extra hierarchical layer is introduced in the
model by placing a prior density on this hyperparameter. It is easy to prove
that a conjugate prior density for �� in this instance is the Beta density,
which gives

�� � Beta(� 0; � 1)
where for simplicity it is assumed that all probabilities share the same prior
values (� 0; � 1), i.e. they are common for all parameters � = �i; hi; B; �block 1t ;
�block 2t ; : : : ; �block kt ; log �. The reference prior for the Beta distribution is
� 0 = � 1 =

1
2
.

Posterior Analysis Using the Gibbs Sampler

Conditional on using the well-de�ned conjugate priors of the previous section
and a Kalman �lter/smoother, it is easy to construct a Gibbs sampler which
will converge to the true posterior densities of the parameters. Note that
in my implementation of the Kalman �lter/smoother I used the Carter and
Kohn (1994) method, but other e¢ cient methods can be used like the Durbin
and Koopman (2002) or DeJong and Shephard (1995). The reader can see
that conditional on each time period t, the TVP-FAVAR model collapses
to the constant parameters FAVAR and simple regression model arguments
apply in this case. For the sake of brevity full formulae are not presented
here - the TVP-FAVAR model has many parameters to attempt providing
full details. Instead I will give direct references to journal articles for more
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information. Note that MATLAB code is provided by the author so that
the reader can replicate the results and use the TVP- models in his/her own
research.
Given the starting values for the parameters, and the �nal rotated solution

for the factors, the Gibbs sampler makes M cycles where we consecutively
sample from the following conditional densities:

� Draw �t using the CK algorithm. In the special case of the volatilities
h, � we must use the KSC algorithm

� Draw Q�=�h � iW (�
�=�h
0 ; �

�=�h
1 ) and Qhi � iG(�hi0 ; �

hi
1 ), where �

�
0 =�PT

t=2

�
�0t � �0t�1

�0 �
�0t � �0t�1

�
+ l� � (1 + n�) � V OLS�

��1
and ��1 = 1 +

n� +
PT

t=1 J
�
t

� Draw J�jdata using the GCK algorithm

� Draw ��jdata � Beta(�� �0; ��
�
1), where ��

�
0 = � 0 +

PT
t=1 J

�
t , and ��

�
1 =

� 1 + T �
PT

t=1 J
�
t

Since the covariance in equation (T.2) is decomposed into a lower triangu-
lar and a diagonal matrix, further transformations of the model are required
in order to ensure that each parameter is in appropriate state-space form.
These are given for example in Koop et al. (2009, Section A.1.2)

The Carter and Kohn (1994) (CK) algorithm:
The �rst step in this algorithm is to use the prediction and update steps

of the Kalman �lter, usually called the "forward iterations" (for t = 1 to
T , we update consecutively each �t conditional on data at time t). Then
smoothing takes place, where we update again our estimates of �t using the
information in future periods, i.e. we condition on the data observed at time
t+ 1. Since for t = T there are no future observations available (i.e. T + 1),
we keep �T �xed from the previous step, and start the "bavkward iterations"
(i.e. for t = T �1 to 1, we update consecutively each �t conditional on t+1).
Exact details are provided in Carter and Kohn (1994). Note only that here
the state variance is J�t � Q� which means that if for a certain t we have
J�t = 0, then �t is not updated, but stays constant to its previous value, �t�1.

The Kim, Shephard and Chib (1998) (KSC) algorithm:
The Carter and Kohn algorithm can be used only in the case of �i; B; �block 1t ;

�block 2t ; : : : ; �block kt . In the case of the volatilities hi, � a modi�cation of the
above algorithm is needed. That is because the errors in the measurement

iv



equations are non-normal. Kim, Shephard and Chib (1998) use a mixture
of normal approximation of the measurement errors, so that the state-space
becomes conditionally Normal, and subsequently the Carter and Kohn algo-
rithm can be applied. This means that some extra parameters have to be
updated from the data, like an index variable Stjdata which indexes each of
the 7 mixture components. I avoid though full details and formulas, since
exact details can be found in Kim et al. (1998), Koop et al. (2009) and
Primiceri (2005).

The Gerlach, Carter and Kohn (2000) (GCK) algorithm:
Gerlach et al. (2000) point out that previous attempts to draw J� (see

Carter and Kohn, 1996 and McCulloch andTsay,1993) can be highly inne-
fective, since there may be high correlation between J� and the states �t.
They propose an algorithm that draws from J�t for each t, without condi-
tioning on the states �t. Mathematically, the density they obtain draws from
is p

�
J�t jdata; J�s 6=t

�
where s; t = 1; : : : ; T , and J�s 6=t denotes all the elements

of J� apart from J�t . This density can be decomposed as in equation (3) of
Gerlach et al. (2000) and then estimated using their algorithm, described in
Section 3.2 of the same paper.
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