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Abstract

This article investigates rent dissipation—the total costs of rent seeking in relation to

the value of the contested rent—in share contests. We consider preferences that are more

general than usually assumed in the literature, which allow for contestants to have dimin-

ishing marginal utility. With sufficiently concave preferences the equilibrium will feature

over-dissipation if the rent is small, and under-dissipation if the rent is large: if contes-

tants have strong diminishing marginal utility and they are contesting a small rent they

are highly sensitive to changes in their allocation of the rent so are relatively effortful in

contesting it; by contrast when the rent is large they are less effortful relative to the size

of the rent. Thus, the inclusion of diminishing marginal utility allows us to reconcile the

Tullock paradox—where rent-seeking levels are observed to be relatively small compared

to the contested rent—with observed over-dissipation of rents in, for example, experimen-

tal settings. We also propose a more general rent dissipation measure that applies to any

contest and is suitable for general preferences.
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1 Introduction

Contests are a common phenomenon within a multitude of economic contexts. These sce-

narios involve agents investing sunk effort to appropriate a contestable rent, such as political

rent seeking, litigation, and violent conflict, to name but a few. Due to the frequency of such

activities, attention has focused on understanding the incentives to engage in contests as well

as the associated costs and impacts. One fundamental concept within the study of contests

is the notion of rent dissipation: analyzing the total costs of rent seeking in relation to the

value of the contested rent. Explaining the degree of rent dissipation can help us to estimate

and anticipate the severity of possible social losses from such activities, or how a rent holder

can maximize effort in their favor. Consequently, rent dissipation has been central to the

discussion of contests since the first formal analysis was introduced (Tullock, 1980).

Contest theory has been developed and extended to provide a tractable explanation of

the drivers of rent-seeking activity, and the associated rent dissipation. Within this analy-

sis, there have been two separate focal points of interest: the (i) under-dissipation; and (ii)

over-dissipation of rents. Under-dissipation—also known as the so-called ‘Tullock Paradox’—is

where the costs of rent seeking are far lower than the value of what is being contested. Since

Tullock (1989), it has been questioned why real-world situations (e.g., lobbying) often involve

very limited expenditures in contesting highly valuable rents. Scholars also inquired whether

over-dissipation can occur, i.e., if the costs of rent seeking could be larger than the value of

the rent. If so, this would have fundamental consequences for the understanding of the social

cost of rent seeking.

In the early literature (e.g., Tullock, 1989) attention focused on the real-world dissipation

of rent being much lower than what is theoretically predicted. Numerous theories have been

proposed in the context of standard contest models to explain this ‘Tullock Paradox’, includ-

ing risk aversion (Hillman and Katz, 1984), heterogeneity in valuations (Hillman and Riley,

1989), uncertain number of contestants (Myerson and Wärneryd, 2006; Münster, 2006; Lim

and Matros, 2009; Kahana and Klunover, 2015), and group rent seeking (Ursprung, 1990).1

The literature has also considered whether over-dissipation can be explained, with contri-

butions appealing to contestants being risk loving (Jindapon and Whaley, 2015), and contest

settings in which the only Nash equilibrium is in mixed strategies where over-dissipation can

occur in incidence (but not in expectation) (Baye et al., 1999).

This literature has focused on winner-take-all contests in which it is assumed the contested

rent is indivisible and a single contestant receives the entire rent with all other contestants

1See Hillman and Long (2019) for a recent survey.
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receiving nothing. This strict indivisibility is often an imperfect modeling assumption for

many real-world environments. An alternative approach is to consider that the rent is perfectly

divisible and each contestant receives a share of the rent dependent on their engagement with

the contest relative to that of other contestants. Share contests are arguably more appropriate

for modeling rent seeking over the divisions of public funds (Mauro, 1998; Hodler, 2007),

government policy (Epstein and Nitzan, 2007; MacKenzie, 2017; Duggan and Gao, 2020) and

numerous other contexts such as remuneration rewards (Singh and Masters, 2018) and the

distribution of pollution permit allowances (MacKenzie and Ohndorf, 2012).2

It has recently been shown that in all but the simplest settings, share contests and winner-

take-all contests are not strategically equivalent and therefore command separate study (Dick-

son et al., 2018). The majority of the literature has exploited features of winner-take-all contests

in an attempt to explain the patterns of dissipation. However, this literature cannot help in

understanding the patterns of dissipation in share contests precisely because these features

take the analysis beyond the simple settings and the equivalence between winner-take-all and

share contests breaks down. In this article we therefore fill this gap presented by the literature

and investigate dissipation within share contests.

In our study of share contests we allow for contestants to have diminishing marginal

utility over the contest outcome—a very natural assumption to make—and demonstrate that

sufficiently strong diminishing marginal utility can reconcile both under- and over-dissipation

of rents. In particular, when the contested rent is small—and so diminishing marginal utility

means contestants are highly sensitive to changes in the spoils they are awarded from the

contest—they are relatively effortful in contesting the rent and this results in the monetary

cost of rent seeking exceeding the monetary value of the rent, leading to over-dissipation. By

contrast, if the rent is large and contestants are less sensitive to changes in their allocation

of the rent they will be relatively less effortful leading to under-dissipation. Thus, when we

account for diminishing marginal utility we can elegantly, and very intuitively, reconcile the

Tullock paradox (when the stakes are large) and over-dissipation (when the stakes are small).

Experimental evidence of Tullock contests (in which the stakes are arguably small) rou-

tinely highlights that subjects expend more effort than otherwise predicted from the pure-

strategy Nash equilibrium (Fallucchi et al., 2013; Shupp et al., 2013; Chowdhury et al., 2014;

Dechenaux et al., 2015; Cason et al., 2010, 2020). This holds for both the winner-take-all designs

2Indeed, even in the early literature, many of the rent-seeking applications can be interpreted as share contests.

For example Tullock (1989) provides examples of rent seeking of dairy farmers to obtain a share of government

funds as well as lobbying for Korean steel import bans, which can be viewed as rent-seeking for an increased

market share by domestic producers.
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of the Tullock contest as well as the share approach. For example, Cason et al. (2020) finds

that within share contests there is approximately 30% more effort than the prediction from the

Nash equilibrium. Behavioral aspects such as non-monetary utility from winning, systematic

mistakes by contestants, and impulsivity have been suggested for this occurring (Sheremeta,

2018; Hillman and Long, 2019). While many of these provide partial explanations (and some

reasoning only applies to the winner-take-all context), there remains an active debate as to

how we can reconcile the empirical findings of contests with the theoretical predictions. In

this article we advance the literature by providing a simple framework that can account for

under- and over-dissipation of rent with an intuitive reasoning for such activity.

We begin our analysis in the simplest possible setting in which we can incorporate dimin-

ishing marginal utility: a ‘simple’ Tullock contest in which each player receives a share of the

rent proportional to their effort. If xi represents the effort of contestant i = 1, . . . , n the Tullock

‘contest success function’, that in a share contest determines the share of the rent contestant i

receives, is given by xr
i

xr
i +∑j 6=i xr

j
and in a simple Tullock contest the contest technology parame-

ter r equals 1. In this setting we demonstrate that when preferences over the contest outcome

are sufficiently concave there is always a level of the contested rent below which there will

be over-dissipation, and a level above which under-dissipation will occur. We then extend

the analysis to consider r > 0 more generally. Here we have to be more careful about the

existence of a pure-strategy Nash equilibrium, but we demonstrate that incorporating dimin-

ishing marginal utility into contests relaxes the restriction on the parameter r required for a

pure-strategy Nash equilibrium to exist, and under this restriction our results on the over- and

under-dissipation of the rent extend easily to these settings.3

Thus, our analysis allows us to elegantly and intuitively reconcile observations of the

Tullock paradox, where the monetary cost of rent seeking falls short of the monetary value

of the rent, and observations, for example in experimental settings, of over-dissipation where

the monetary cost of rent seeking exceeds the monetary value of the rent. Yet, when we

explicitly consider share contests and that contestants derive utility from the contest outcome,

we question whether comparing the monetary value of effort to the monetary value of the rent

is the appropriate ratio to capture the essence of what we mean by dissipation. To remedy this

limitation, we thus propose a more general measure of dissipation, encompassing previous

dissipation ratios that have been proposed by scholars (e.g., Chung, 1996; Hurley, 1998; Baye

et al., 1999; Alcalde and Dahm, 2010). Our novel measure evaluates the relative utility loss in a

contest compared to the first-best solution, thus constituting a well-designed tool for welfare

3In contrast to the literature on winner-take-all contests, we show that in symmetric n-player (2-player) contests

our results hold (under conditions) for values of r larger than n
n−1 (2), respectively.
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analysis. Unsurprisingly, this adapted dissipation measure is always (in expectation) bounded

by 1, thus revealing that while over-dissipation under the standard definition may well happen

at equilibrium, the efficiency loss will never exceed the maximum achievable welfare.

The remainder of the article is organized as follows. In Section 2 the model is outlined.

Section 3 generalizes the model and Section 4 provides a generalized dissipation ratio for

general preferences. Section 5 provides some concluding remarks.

2 The model

Consider a contest in which a set of agents N = {1, . . . , n} expend effort to obtain a share of

a perfectly divisible rent Z. Agent i ∈ N selects their effort xi ≥ 0 in order to capture a share

of the rent which is determined according to

φ(xi, x−i) =


xr

i
xr

i +∑j 6=i∈N xr
j

if ∑k∈N xk > 0 or

1
n if ∑k∈N xk = 0,

where x−i = {xj}j 6=i is the vector of other players’ effort choices. The rent apportioned to

contestant i is then given by zi ≡ φ(xi, x−i)Z. This is the standard Tullock (1980) contest

success function, and for our initial exposition we focus on so-called ‘simple’ Tullock contests

in which r = 1: contestants receive a proportional share of the rent according to their efforts.

Later in the article we extend the analysis to consider more general contest technologies where

r 6= 1.

In share contests it is almost unanimously assumed that contestants have a linear valuation

of their allocation of the rent from the contest, zi.4 By contrast, we consider that contestants

have an additively separable utility function given by

ui(zi, xi) = vi(zi)− ci(xi)

where vi(0) = 0, v′i > 0 and vi
′′ ≤ 0, allowing us to capture that contestants have diminishing

marginal utility over the contest outcome. ci(·) is the monetary cost of effort, measured on the

same scale as the contested rent, and we assume ci(0) = 0, c′i > 0 and ci
′′ ≥ 0.

Incorporating diminishing marginal utility in the analysis of share contests is, we believe,

important. For instance, in a contest over public funds it is intuitive to consider that agents

may experience large marginal utility gains for initially redirected public funds but the gains to

utility reduce as their captured public funds increase. Equally, for a rent-seeking game over the

determination of a government policy, large gains in utility may exist when government policy

4An exception is Dickson et al. (2018) that considers a general formulation of utility over a share contest.
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moves in an agent’s favorable direction, but these marginal gains will reduce as the policy is

more distant to the agent’s most desirable policy, that is, when the contested policy space is

larger (e.g., Persson and Tabellini, 2000). As we have become accustomed in microeconomic

analysis, incremental gains that improve one’s lot from a relatively poor position are worth

more than those that improve it from a relatively good position.

Contestants simultaneously choose their effort to maximize their utility in a game of com-

plete but imperfect information, and we look for a Nash equilibrium in pure strategies. Each

contestant can be seen as solving the problem

max
xi≥0

vi(zi)− ci(xi) s.t. zi =
xi

xi + ∑j 6=i xj
Z

taking the effort choices of others as given. Our assumptions on value and cost functions

imply this optimization problem is globally concave and so the first-order condition is both

necessary and sufficient for identifying the contestant’s best response. Letting X−i ≡ ∑j 6=i xj,

we denote this best response x̂i(X−i) = max{0, xi}, where xi is the solution to

li(xi, X−i) ≡ v′i(zi)
X−i

[xi + X−i]2
Z− c′i(xi) = 0.

For ease of exposition we follow the existing literature and assume all players are sym-

metric (vi(·) = v(·) and ci(·) = c(·) for all i ∈ N), and focus on symmetric Nash equilibria in

which xi = x∗ for all i ∈ N, and therefore z∗i = Z/n for all i ∈ N. Note that the results in

this article are easily extended to incorporate asymmetric contests—using the tools of aggre-

gate games—but are omitted for the sake of brevity and because the underlying mechanisms

are neatly captured in a symmetric setup. Equilibrium effort in an interior symmetric Nash

equilibrium satisfies

v′(Z/n)
n− 1

n2
Z
x∗
− c′(x∗) = 0.

Given strict global concavity of the objective function (along with the fact that the payoff with

zero effort is zero), the symmetric Nash equilibrium will be unique. It will involve strictly

positive effort levels if each player’s marginal payoff with zero effort when everyone else

is using the candidate equilibrium effort is positive, i.e., l(0, [n − 1]x∗) > 0, otherwise the

rent will be insufficient relative to the costs of rent seeking and all contestants will optimally

respond with zero effort.

It is convenient to re-write the condition defining effort in an interior symmetric Nash

equilibrium as

x∗c′(x∗) =
n− 1

n2 v′(Z/n)Z. (1)

We want to investigate the nature of the dissipation ratio, measuring the total rent-seeking
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outlays in relation to the contested rent, which is given by

D ≡ nc(x∗)
Z

=
n− 1

n
v′(Z/n)

η(x∗)
, (2)

where η(x) ≡ xc′(x)
c(x) is the elasticity of the cost function.

To illustrate ideas, we consider in the first part of our analysis that costs are linear: c(x) =

cx. In this case there is an explicit solution for equilibrium contest effort given by

x∗ =
n− 1

n2 v′(Z/n)
Z
c

,

which is strictly positive so the unique symmetric Nash equilibrium is indeed interior. We

also have an explicit expression for the equilibrium dissipation ratio

D =
n− 1

n
v′(Z/n)

since for a linear cost function η(x) = 1 for all x ≥ 0.

From this expression it is transparent that both under- and over-dissipation can emerge in

the contest equilibrium depending on whether v′(Z/n) is less than, or exceeds n
n−1 . If v(·) is

linear (as is assumed in the literature on share contests) then v′(·) = 1 which is, of course, less

than n
n−1 implying under-dissipation regardless of the size of the contested rent. However,

if v(·) is strictly concave (implying v′(Z/n) is decreasing in Z) this raises the possibility that

v′(Z/n) > n
n−1 when Z is small enough.

Proposition 1. Assume v′(z) → 0 as z → ∞. If v′(0) > n
n−1 then there exists a Z̃ ≡ nv′−1 ( n−1

n

)
such that D > (<)1⇔ Z < (>)Z̃, so the contest exhibits over-dissipation for Z < Z̃. By contrast, if

v′(0) ≤ n
n−1 the contest never exhibits over-dissipation.

Proof. Suppose v′(0) ≤ n
n−1 . Then n−1

n v′(0) ≤ 1 and concavity of v(·) implies D = n−1
n v′(Z/n) ≤

1 for all Z > 0. By contrast, if v′(0) > n
n−1 then since v′(z) → 0 as z → ∞ the intermediate

value theorem implies there is a Z̃ > 0 such that n−1
n v′(Z̃/n) = 1. Concavity of v(·) then

implies D ≡ n−1
n v′(Z/n) > (<)1⇔ Z < (>)Z̃.

Thus, if preferences are ‘sufficiently concave’—here measured by v′(0) being larger than
n

n−1 —there will be over-dissipation in contests in which the rent is relatively small, while there

will be under-dissipation in contests with large rents. We illustrate with a worked example.

Example 1. Consider a contest in which there are n contestants each with vi(z) = γzα where α ∈

(0, 1), γ ∈ (0, 1], and ci(x) = cx with c > 0. Then effort in the symmetric Nash equilibrium is given

by

x∗ =
n− 1

n
αγ

c
[Z/n]α
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Figure 1: This illustrates the critical threshold of rent, Z̃, under which over-dissipation of the rent will

occur, plotted as a function of α which controls the degree of concavity of preferences.

and the dissipation ratio takes the form

D =
n− 1

n
αγ

[Z/n]1−α
.

It follows that D R 1⇔ Z Q Z̃ where Z̃ = n
[ n−1

n αγ
] 1

1−α .

In this example, when preferences are sufficiently concave (i.e., α is small enough) the

contest equilibrium exhibits over-dissipation if the contested rent is small enough, and in the

limit where the contested rent becomes infinitesimally small, D → ∞. Consider a particular

value for α and consider reducing the contested rent in a contest. Then as the contested

rent reduces, the effort of each contestant reduces (as in this example equilibrium effort is

monotonically increasing in Z), but the reduction becomes smaller relative to the reduction

in the rent, so as the rent gets sufficiently small (i.e., below Z̃) the dissipation ratio exceeds

1. Because of the concavity of the utility function contestants increasingly care about further

reductions in their allocation of the rent and so become relatively more effortful in contesting it.

By contrast, when the contested rent is relatively large the contest exhibits under-dissipation,

and inspection of the expression for D reveals D → 0 as Z → ∞.

Having studied the linear cost case, we now return to the general cost case where the

analysis is somewhat more nuanced as contest effort is only implicitly defined by (1).

Proposition 2. Assume preferences are such that v′′ < 0 and they satisfy the Inada conditions

limz→0 v′(z) = ∞ and limz→∞ v′(z) = 0; and the cost function is such that η(x) ∈ (0, ∞) for

all x > 0, limx→0 η(x) = η ∈ (0, ∞) and limx→∞ η(x) = η̄ ∈ (0, ∞). Then there is a unique interior

symmetric Nash equilibrium in which:
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1. D → 0 as Z → ∞, implying there is a Z̄ such that in a contest with Z > Z̄ under-dissipation

occurs; and

2. D → ∞ as Z → 0, implying there is a Z such that in a contest with Z < Z over-dissipation

occurs.

Proof. Recall that

x∗c′(x∗) =
n− 1

n2 v′(Z/n)Z and (1)

D ≡ nc(x∗)
Z

=
n− 1

n
v′(Z/n)

η(x∗)
where η(x) ≡ xc′(x)

c(x)
. (2)

The assumption limz→0 v′(z) = ∞ implies l(0, X−i) > 0 for all X−i > 0 and therefore (1)

will identify the unique interior symmetric Nash equilibrium.

First consider the large Z limit in case 1, and let limZ→∞ v′(Z/n)Z = ȳ. From (1),

limZ→∞ x∗c′(x∗) = n−1
n2 ȳ (*). There are three cases to consider. a) if ȳ = 0 then (*) implies

that limZ→∞ x∗ = 0. Our assumption that limx→0 η(x) > 0 combined with limz→∞ v′(z) = 0

can be used in (2) to conclude that limZ→∞ D = 0. b) if ȳ ∈ (0, ∞) then (*) implies that

limZ→∞ x∗ ∈ (0, ∞) and so it follows that limZ→∞ η(x) ∈ (0, ∞). Then the assumption that

limz→∞ v′(z) = 0 can be used to deduce from (2) that limZ→∞ D = 0. c) if ȳ = ∞ then

(*) implies limZ→∞ x∗ = ∞. Then our assumption that limx→∞ η(x) ∈ (0, ∞) along with

limz→∞ v′(z) = 0 can be used in (2) to deduce that limZ→∞ D = 0.

Next we consider the small Z limit (case 2), where we write limZ→0 v′(Z/n)Z = ¯̄y and

note from (1) that limZ→0 x∗c′(x∗) = n−1
n2 ¯̄y (**). There are again three cases. a) if ¯̄y = 0

then (**) implies limZ→0 x∗ = 0. Then the assumption that limx→0 η(x) < ∞ combined

with limz→0 v′(z) = ∞ can be used in (2) to deduce that limZ→0 D = ∞. b) if ¯̄y ∈ (0, ∞)

then (**) implies limZ→0 ∈ (0, ∞) and therefore limZ→∞ η(x) ∈ (0, ∞). The assumption

that limz→0 v′(z) = ∞ can then be used in (2) to deduce that limZ→0 D = ∞. c) if ¯̄y = ∞

then (**) implies limZ→∞ x∗ = ∞. Then our assumption that limx→∞ η(x) < ∞ along with

limz→0 v′(z) = ∞ can be used in (2) to deduce that limZ→0 D = ∞.

This proposition tells us that for ‘sufficiently concave’ preferences (which in this general

case is interpreted as v(·) satisfying the Inada conditions) there will be contests, in which

the rent is small enough, that exhibit over-dissipation: the fact that preferences exhibit high

marginal utility over small allocations from the contest means that when contestants are fight-

ing over small allocations they fight for them relatively hard, and the monetary cost of rent

seeking outweighs the monetary value of the prize being contested. This is not universally

true for all contests, however: when the contest involves a rent that is large enough we get the

usual result of under-dissipation.
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Our model therefore helps us to reconcile the so-called Tullock paradox—that rent-seeking

efforts are relatively small in situations where large rents are being contested—with more re-

cent findings of over-dissipation. Our extension to the theory, which accounts for diminishing

marginal utility over the allocation of the contested rent, allows for the incentives to engage in

rent seeking to differ depending on the size of the rent being contested. When the rent is large

the marginal incentives to further increase rent seeking effort are low and so the monetary

cost of effort is low relative to the value of the rent; by contrast, when the rent is small the

marginal incentive to engage in rent seeking, to improve one’s allocation of the spoils from a

low level, is large leading contestants to be relatively effortful and implying the monetary cost

of effort is large relative to the value of the contested rent, leading to over-dissipation.

3 More general Tullock share contests

In the previous section we initially modeled a simple contest success function and showed un-

der what circumstances over and under rent dissipation can occur. In this section, we consider

a more general Tullock share contest in which the contest success function is determined by:

φ(xi, x−i) =


xr

i
xr

i +∑j 6=i xr
j
> 0 if ∑k∈N xk > 0, or

1
n if ∑k∈N xk = 0

(3)

with r > 0.

With this more general contest success function the issue of the existence of a pure strategy

Nash equilibrium becomes pertinent, as for permissible values of r the payoff function might

not be globally strictly concave. As with a simple Tullock contest, if r is such that the pay-

off function is globally strictly concave then there will be a unique interior symmetric Nash

equilibrium so long as the marginal payoff is strictly positive with zero effort. By contrast, if

the payoff function is not globally concave a local strict concavity check is required, combined

with checking that contestants’ payoffs in the candidate equilibrium are positive.

Investigating this issue in a symmetric 2-player linear contest (in which there is an explicit

solution), Baye et al. (1994)’s calculations show that for r ≤ 1 payoff functions are globally

strictly concave, whereas for r > 1 they are not. However, for 1 < r ≤ 2 the payoff function is

locally strictly concave around a candidate equilibrium, and the candidate equilibrium payoffs

are non-negative. By contrast, for r > 2 the candidate equilibrium payoffs are negative where

the first-order condition is satisfied and so there is no pure strategy Nash equilibrium and the

only equilibrium in the contest is in mixed strategies. A simple extension of these calculations

reveals that for symmetric linear n-player contests, r ≤ 1 remains the condition required for
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global strict concavity; and local strict concavity alongside strictly positive payoffs requires

r ≤ n
n−1 .

We now want to investigate the nature of the restrictions required for global strict concavity

with non-linear preferences that satisfy the Inada conditions (so that the marginal payoff is

strictly positive with zero effort), in which case there will be a unique pure strategy Nash

equilibrium involving strictly positive levels of effort. In a Nash equilibrium in pure strategies

each agent can be seen as choosing their effort to maximize their payoff taking the effort

choices of others as fixed:

max
xi≥0

vi(zi)− ci(xi) s.t. zi =
xr

i
xr

i + ∑j 6=i xr
j
Z.

The first-order condition is

v′i(zi)
∂zi

∂xi
− c′i(xi) = 0, (4)

where ∂zi
∂xi

=
rxr−1

i ∑j 6=i xr
j

[xr
i +∑j 6=i xr

j ]
2 Z, and the second-order condition implying global strict concavity

(suppressing the arguments of functions) is

vi
′′
[

∂zi

∂xi

]2

+ v′i
∂2zi

∂x2
i
− ci

′′ < 0 (5)

for all xi > 0. Note that, after some simplification,

∂2zi

∂x2
i
=

rxr−2
i ∑j 6=i xr

j [[r− 1][xr
i + ∑j 6=i xr

j ]− 2rxr
i ]

[xr
i + ∑j 6=i xr

j ]
3 Z.

If r ≤ 1 this term is globally negative. If v(·) is linear then this is the only term in the second-

order condition necessitating r ≤ 1 to ensure global concavity. However, when we account for

a concave evaluation of the contest outcome there is an additional negative term in the second-

order condition (even if costs are linear), the magnitude of which depends on the degree of

concavity of the payoff function. This raises the possibility that the second-order condition

can be globally satisfied when r > 1, or even when r > n
n−1 , the conditions for which we now

investigate.

Suppose costs are linear so the final term in the second-order condition is zero.5 Focusing

on the first two terms in (5), to obtain a globally concave payoff function (we assume here ∂2zi
∂x2

i

is positive, for otherwise the second-order condition is de facto satisfied), we require

vi
′′
[

∂zi

∂xi

]2

+ v′i
∂2zi

∂x2
i
< 0,

5By considering linear costs we are studying the most stringent scenario since allowing for convex costs ‘helps’

in terms of the payoff function being globally concave.
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which can be expressed as

εi(zi)

∂zi
∂xi

zi
∂2zi
∂x2

i

∂zi

∂xi
< −1 (6)

where εi(zi) ≡ ziv′′
v′ is the zi-elasticity of the marginal utility. Thus there exists a unique

symmetric pure-strategy Nash equilibrium as long as this condition holds, which requires

preferences to be sufficiently concave.

Proposition 3. A unique symmetric pure-strategy Nash equilibrium exists in the Tullock share contest

if (6) holds, so even if r > n
n−1 a pure strategy Nash equilibrium can exist if preferences are sufficiently

concave.

We illustrate Proposition 3 with the worked example introduced in Section 2.

Example 1′. Consider the same setting as in Example 1, but where φ(xi, x−i) is given by (3) with

r > 0. Each contestant’s marginal payoff is given by

αγ

[
xr

i

∑j∈N xr
j
Z

]α−1 rxr−1
i ∑j 6=i xr

j

[∑j∈N xr
j ]

2 Z,

and consequently the optimization problem is globally concave if and only if:

αγrZα

(
∑ xr

j

)α

∑j 6=i xr
j x

αr−2
i(

∑ xr
j

)2(α+1)

[
(αr− 1)∑ xr

j − (α + 1)rxr
i

]
< 0.

A sufficient condition for global concavity is therefore that r < 1
α , so when the evaluation of the

contest outcome is concave (α < 1), the payoff function can be strictly concave even when r exceeds 1

(so long as it is not too large). Put differently, for any value of r > 1 there always exists a non-empty

set of concavity parameters α ∈ (0, 1
r ] such that a unique pure-strategy Nash equilibrium exists.

We now turn to investigate the nature of the dissipation ratio in these more general contest

settings. From the first-order condition (4), in the symmetric Nash equilibrium

x∗c′(x∗) =
n− 1

n2 rv′(Z/n)Z, (7)

and the dissipation ratio is given by

D ≡ nc(x∗)
Z

=
n− 1

n
r

v′(Z/n)
η(x∗)

. (8)

Since these expressions are only slight modifications to the simple contest case in which

r = 1, our results are also similar. In the case of linear costs where we have an explicit solution,

the analog of Proposition 1 for the more general case is as follows.
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Proposition 4. Assume v′(z)→ 0 as z→ ∞. If v′(0) > 1
r

n
n−1 then there exists a Z̃ ≡ nv′−1 (r n−1

n

)
such that D > (<)1⇔ Z < (>)Z̃, so the contest exhibits over-dissipation for Z < Z̃. By contrast, if

v′(0) ≤ 1
r

n
n−1 the contest never exhibits over-dissipation.

Adapting the worked example introduced in Section 2 helps to further illustrate this result.

Example 1′ (continued). Consider the same setting as in Example 1′. Effort in the symmetric Nash

equilibrium is given by:

x∗ =
n− 1

n
αγr

c
[Z/n]α,

and the dissipation ratio takes the form

D =
n− 1

n
αγr

[Z/n]1−α
.

It follows that D R 1⇔ Z Q Z̃ where Z̃ = n
[ n−1

n αγr
] 1

1−α .

In the case of non-linear cost functions, Proposition 2 holds mutatis mutandis for more

general contests where r is such that the payoff function is globally strictly concave.

4 General preferences and rent dissipation

Our analysis so far reveals that under- and over-dissipation can both occur with general pref-

erences when considering the standard definition of dissipation, namely the ratio of players’

aggregate cost of contest effort to the contested rent. Yet, while our model helps rational-

ize real-world regularities that scholars have only be able to explain so far with the help of

behavioral biases (e.g., risk-loving preferences), the realization (as opposed to the expecta-

tion) of mixed strategies, or uncertainty (e.g., the number of contestants), it also reveals the

limitations of the dissipation measures considered so far by the literature. We thus revisit

the rent dissipation concept and propose a general measure that encompasses existing ones,

while also accommodating the more general setting proposed in this paper, as well as different

frameworks involving probabilistic contests and all-pay auctions.

In the context of share contests, we consider any model where players are seen as optimiz-

ing the following problem

max
xi≥0

ui(zi, xi) s.t. zi =
pi(xi)

∑j∈N pj(xj)
Z. (9)

The unique Nash equilibrium in pure strategies is known to exist under certain conditions

(see Dickson et al., 2018).

Let z̄ be vector of shares (or expected benefit) such that z̄ = (z̄1, z̄2, ..., z̄n), ∑n
i=1 z̄i = Z, and
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Ū(z̄, 0) ≡ max
z̄=(z̄1,z̄2,...,z̄n)

n

∑
i

Ui(z̄i, 0). (10)

As such, z̄ defines the first-best solution, and Ū(z̄, 0) is obviously single-valued. Our

general dissipation measurement aims at measuring the inefficiency of non-cooperative play

in the current strategic setting, by capturing the utility loss arising from non-cooperative play.

We therefore define the general dissipation ratio as:

D =
Ū(z̄, 0)−∑n

i=1 Ui(z∗i , x∗i )
Ū(z̄, 0)

. (11)

It is immediate to observe that D ∈ [0, 1]: the ratio is indeed bounded from below at 0 by

construction, while it can only exceed 1 if players obtain (on average) negative payoffs, which

cannot happen in a complete information setting where players can always secure a payoff of

0 by refraining from investing in effort.

Notice that this general dissipation ratio encompasses previous measures considered by

scholars. Importantly, the specific case where the valuation of the rent and the cost of effort

are linear and additive, i.e., ui(zi, xi) = zi − xi, our proposed measure reduces to D = ∑i xi
Z ,

the standard dissipation ratio considered elsewhere in the literature. Chung (1996) adapts

the rent dissipation measure to non-linear endogenous production of rents. By imposing the

restriction that ui(zi, xi) = zi(xi)− xi, our D-measure exactly reproduces the dissipation ratio

considered in Chung (1996). Lastly, Hurley (1998) proposes the contest-efficiency concept CE,

relating aggregate payoffs to the first-best allocation of the prize, i.e., an inverse measure of

rent dissipation since D = 1−CE. Once again, in contexts featuring probabilistic contests and

asymmetric valuations of the prize as in Hurley (1998), one obtains that D = 1− CE.

5 Concluding remarks

In this article we have reconciled two apparent paradoxes in economics: the real world under-

dissipation of rents, i.e., the Tullock paradox; and the observed over-dissipation of rents in

experimental settings. Arguments in the literature so far used to rationalize the former are

inconsistent with the latter, explanations of which have appealed to behavioral ideas. Our

approach, based on share contests, simply recognizes that contestants may have diminishing

marginal utility over the contest outcome. If they do, and this is sufficiently strong, then

we can explain both over-dissipation of rents when they are small (as they arguably are in

experimental settings) and under-dissipation of rents when they are large (as is arguably the

case in Tullock’s observations).
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The intuition is simple: with sufficiently strong diminishing marginal utility, when the con-

tested rent is small contestants are highly sensitive to changes in the spoils they are awarded

from the contest and so they are relatively effortful in contesting the rent, resulting in the mon-

etary cost of rent seeking exceeding the monetary value of the rent leading to over-dissipation;

by contrast, if the rent is large the contestants are less sensitive to changes in their allocation

of the rent, and they will be relatively less effortful leading to under-dissipation.

Our theory thus expands the literature on rent seeking by providing a rational explanation

for observed phenomena, and one that relies on the backbone of economic theory, namely

diminishing marginal utility. Yet, upon closer observation, the standard dissipation ratio could

fail to accurately measure inefficiencies when players have non-linear preferences. To remedy

this limitation, we thus also propose in our article a more general measure of dissipation

that evaluates the relative utility loss in a contest compared to the first-best solution, thus

constituting a well-designed tool for welfare analysis.
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